cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054578 Number of subsequences of {1..n} such that all differences of pairs of terms are distinct (i.e., number of Golomb rulers on {1..n}).

Original entry on oeis.org

1, 3, 6, 12, 21, 35, 56, 90, 139, 215, 316, 462, 667, 961, 1358, 1918, 2665, 3693, 5034, 6844, 9187, 12365, 16416, 21786, 28707, 37721, 49082, 63920, 82639, 106721, 136674, 174894, 222557, 283107, 357726, 451574, 567535, 712855, 890404, 1112080, 1382415
Offset: 1

Views

Author

John W. Layman, Apr 11 2000

Keywords

Examples

			a(4) = 12: [1], [2], [3], [4], [1,2], [1,3], [1,4], [2,3], [2,4], [3,4], [1,2,4], [1,3,4]. - _Alois P. Heinz_, Jan 16 2013
		

Crossrefs

Partial sums of A308251.

Programs

  • Maple
    b:= proc(n, s) local sn, m;
          if n<1 then 1
        else sn:= [s[], n]; m:= nops(sn);
             `if` (m*(m-1)/2 = nops (({seq (seq (sn[i]-sn[j],
               j=i+1..m), i=1..m-1)})), b(n-1, sn), 0) +b(n-1, s)
          fi
        end:
    a:= proc(n) a(n):= b(n-1, [n]) +`if` (n=0, -1, a(n-1)) end:
    seq(a(n), n=1..30);  # Alois P. Heinz, Jan 16 2013
  • Mathematica
    b[n_, s_List] := b[n, s] = Module[{sn, m}, If[n < 1, 1, sn = Append[s, n]; m = Length[sn]; If[m(m - 1)/2 == Length @ Union @ Flatten @ Table[ Table[ sn[[i]] - sn[[j]], {j, i + 1, m}], {i, 1, m - 1}], b[n - 1, sn], 0] + b[n - 1, s]]];
    a[n_] := a[n] = b[n - 1, {n}] + If [n == 0, -1, a[n - 1]];
    Table[Print[n, " ", a[n]]; a[n], {n, 1, 41}] (* Jean-François Alcover, Apr 28 2020, after Alois P. Heinz *)

Formula

a(n) = A143823(n) - 1. - Carl Najafi, Jan 16 2013

Extensions

More terms from Carl Najafi, Jan 15 2013