A054725 a(1)=1; a(n) = Sum_{p | n} e * a(p-1), where sum is over all primes p that divide n, and e is the multiplicity of p in n.
1, 1, 1, 2, 2, 2, 2, 3, 2, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 4, 3, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 5, 4, 5, 4, 4, 4, 4, 4, 5, 5, 4, 4, 5, 4, 5, 5, 5, 4, 5, 5, 5, 5, 4, 5, 5, 4, 5, 5, 5, 5, 5, 4, 6, 5, 5, 5, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 4, 6, 6, 5, 6, 5, 5, 6, 6, 5, 5, 6, 5, 6, 5, 6, 6, 5, 5, 6, 6, 6, 6, 6
Offset: 1
Keywords
Examples
a(20) = a(2-1) + a(2-1) + a(5-1) = 1 + 1 +2 = 4 because 20 = 2*2*5.
Links
- Joerg Arndt, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Fold[Append[#1, Total@ Table[#1[[p - 1]], {p, Flatten@ Map[ConstantArray[#1, #2] & @@ # &, FactorInteger[#2]]}]] &, {1}, Range[2, 105]] (* Michael De Vlieger, Dec 11 2017 *)
-
PARI
a(n)=if (n<=1, 1, my(F=factor(n)); sum(e=1, #F[,1], F[e,2] * a(F[e,1]-1) ) ); vector(200, n, a(n)) \\ Joerg Arndt, Apr 08 2014
Formula
a(1) = 1 and a(n) = A064415(n) for n>=2. [Joerg Arndt, Apr 08 2014]
Extensions
Title clarified by Sean A. Irvine, Feb 18 2022