cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A054808 First term of strong prime quintets: p(m+1)-p(m) > p(m+2)-p(m+1) > p(m+3)-p(m+2) > p(m+4)-p(m+3).

Original entry on oeis.org

1637, 1759, 1831, 1847, 1979, 2357, 2447, 2477, 2503, 3413, 3433, 4177, 4493, 5237, 5399, 5419, 6011, 6619, 7219, 7253, 7727, 7853, 7907, 8123, 8467, 9551, 9587, 11003, 11353, 11551, 11813, 12379, 13841, 14797, 15107, 15511, 16007, 16273, 16787, 16993, 17359, 18149, 18289
Offset: 1

Views

Author

Henry Bottomley, Apr 10 2000

Keywords

Comments

First member of pairs of consecutive primes in A054804 (first of strong quartets): The first 10^4 terms of that sequence yield over 2000 terms of this sequence. - M. F. Hasler, Oct 27 2018

Crossrefs

Cf. A051634, A051635; A054800 .. A054803: members of balanced prime quartets (= 4 consecutive primes in arithmetic progression); A054804 .. A054818: members of strong prime quartets, quintets, sextets; A054819 .. A054840: members of weak prime quartets, quintets, sextets, septets.

Programs

Formula

a(n) = prevprime(A054809(n)); A054808 = {m = A054804(n) | nextprime(m) = A054804(n+1)}; nextprime = A151800, prevprime = A151799. - M. F. Hasler, Oct 27 2018

Extensions

Edited and offset corrected to 1 by M. F. Hasler, Oct 27 2018

A054814 Second term p(m) of strong prime sextets: p(m)-p(m-1) > p(m+1)-p(m) > p(m+2)-p(m+1) > p(m+3)-p(m+2) > p(m+4)-p(m+3).

Original entry on oeis.org

1847, 2503, 3433, 9587, 21467, 22993, 25219, 26083, 32159, 33377, 33911, 39079, 40787, 41213, 44249, 47269, 48799, 55871, 57773, 67003, 70099, 74257, 74687, 74699, 75109, 75133, 82939, 84299, 87833, 88379, 88643, 103769, 103867, 106243, 106937, 108161, 110899, 112997, 118127, 120371
Offset: 1

Views

Author

Henry Bottomley, Apr 10 2000

Keywords

Crossrefs

Cf. A051634, A051635; A054800 .. A054803: members of balanced prime quartets (= consecutive primes in arithmetic progression); A054804 .. A054818: members of strong prime quartet, quintet, sextet; A054819 .. A054840: members of weak prime quartet, quintet, sextet, septets.
Subsequence of A054808.

Programs

  • Mathematica
    Select[Partition[Prime[Range[12000]],6,1],Max[Differences[#,2]]<0&][[;;,2]] (* Harvey P. Dale, Jun 17 2023 *)

Formula

a(n) = A151800(A054813(n)) = A151799(A054815(n)), A151800 = nextprime, A151799 = prevprime; A054814 = { m = A054809(n) | m = nextprime(A054809(n-1)) }. - M. F. Hasler, Oct 27 2018

Extensions

Edited and offset changed to 1 by M. F. Hasler, Oct 26 2018
Showing 1-2 of 2 results.