cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A054836 Third term of weak prime septet: p(m-1)-p(m-2) < p(m)-p(m-1) < p(m+1)-p(m) < p(m+2)-p(m+1) < p(m+3)-p(m+2) < p(m+4)-p(m+3).

Original entry on oeis.org

15383, 64927, 68213, 68903, 128987, 128993, 143519, 154087, 158009, 192383, 221723, 222403, 244471, 249737, 285301, 318683, 337283, 354377, 357839, 374189, 385397, 394733, 402587, 402593, 419603, 439171, 441923, 448387, 457403, 457679, 458197, 482513, 527987, 529819, 577537, 582767
Offset: 1

Views

Author

Henry Bottomley, Apr 10 2000

Keywords

Crossrefs

Cf. A051635; A054800 .. A054803: members of balanced prime quartets (= 4 consecutive primes in arithmetic progression); A054804 .. A054818: members of strong prime quartet, quintet, sextet; A054819 .. A054840: members of weak prime quartet, quintet, sextet, septets.

Formula

a(n) = A151800(A054835(n)) = A151799(A054838(n)), A151800 = nextprime, A151799 = prevprime; A054836 = { m = A054829(n) | m = nextprime(A054829(n-1)) }. - M. F. Hasler, Oct 27 2018

Extensions

More terms from M. F. Hasler, Oct 27 2018

A054839 Sixth term of weak prime septet: p(m-4)-p(m-5) < p(m-3)-p(m-4) < p(m-2)-p(m-3) < p(m-1)-p(m-2) < p(m)-p(m-1) < p(m+1)-p(m).

Original entry on oeis.org

15413, 64969, 68239, 68927, 129011, 129023, 143551, 154127, 158047, 192431, 221747, 222461, 244507, 249779, 285377, 318713, 337313, 354401, 357913, 374239, 385433, 394759, 402613, 402631, 419651, 439217, 441971, 448451, 457433, 457711, 458239, 482539, 528013
Offset: 1

Views

Author

Henry Bottomley, Apr 10 2000

Keywords

Crossrefs

Cf. A051635; A054800 .. A054803: members of balanced prime quartets (= consecutive primes in arithmetic progression); A054804 .. A054818: members of strong prime quartets, quintets, sextets; A054819 .. A054840: members of weak prime quartets, quintets, sextets, septets.

Programs

  • Mathematica
    Transpose[Select[Partition[Prime[Range[50000]],7,1],Min[ Differences[ #,2]]> 0&]][[6]] (* Harvey P. Dale, Sep 27 2015 *)

Formula

a(n) = A151800(A054838(n)) = A151799(A054840(n)), A054839 = { m = A054832(n) | m = A151800(A054832(n-1)) } (A151800: nextprime, A151799: prevprime). - M. F. Hasler, Oct 27 2018

Extensions

More terms from Harvey P. Dale, Sep 27 2015

A054837 Fourth term of weak prime septet: p(m-2)-p(m-3) < p(m-1)-p(m-2) < p(m)-p(m-1) < p(m+1)-p(m) < p(m+2)-p(m+1) < p(m+3)-p(m+2).

Original entry on oeis.org

15391, 64937, 68219, 68909, 128993, 129001, 143527, 154097, 158017, 192391, 221729, 222419, 244481, 249749, 285317, 318691, 337291, 354383, 357859, 374203, 385403, 394739, 402593, 402601, 419609, 439183, 441937, 448397, 457411, 457687, 458207, 482519, 527993
Offset: 1

Views

Author

Henry Bottomley, Apr 10 2000

Keywords

Crossrefs

Cf. A051635; A054800 .. A054803: members of balanced prime quartets (= consecutive primes in arithmetic progression); A054804 .. A054818: members of strong prime quartet, quintet, sextet; A054819 .. A054840: members of weak prime quartet, quintet, sextet, septets.

Programs

  • Mathematica
    Transpose[Select[Partition[Prime[Range[100000]],7,1],Min[ Differences[ #,2]] > 0&]][[4]] (* Harvey P. Dale, Aug 29 2013 *)

Formula

a(n) = A151800(A054836(n)) = A151799(A054838(n)), A151800 = nextprime, A151799 = prevprime; A054837 = { m = A054830(n) | m = nextprime(A054830(n-1)) }. - M. F. Hasler, Oct 27 2018

Extensions

More terms from Harvey P. Dale, Aug 29 2013
Showing 1-3 of 3 results.