A054843 Number of sequences of consecutive nonnegative integers (including sequences of length 1) that sum to n.
1, 2, 1, 3, 1, 2, 3, 2, 1, 3, 3, 2, 2, 2, 2, 5, 1, 2, 3, 2, 2, 5, 2, 2, 2, 3, 2, 4, 3, 2, 4, 2, 1, 4, 2, 4, 4, 2, 2, 4, 2, 2, 4, 2, 2, 7, 2, 2, 2, 3, 3, 4, 2, 2, 4, 5, 2, 4, 2, 2, 4, 2, 2, 6, 1, 4, 5, 2, 2, 4, 4, 2, 3, 2, 2, 6, 2, 4, 5, 2, 2, 5, 2, 2, 4, 4, 2, 4, 2, 2, 6, 5, 2, 4, 2, 4, 2, 2, 3, 6, 3, 2, 4, 2, 2, 9
Offset: 0
Examples
a(0) = 1 because 0 = 0; a(1) = 2 because 1 = 0+1 or 1; a(15) = 5 because 15 = 0+1+2+3+4+5 or 1+2+3+4+5 or 4+5+6 or 7+8 or 15.
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
Programs
-
Maple
N:= 1000: G:= add(x^(k*(k-1)/2)/(1-x^k),k=1..floor((1+sqrt(1+8*N))/2)): S:= series(G,x,N+1): seq(coeff(S,x,j),j=0..N); # Robert Israel, Nov 15 2015
-
PARI
vector(100, n, local(A); if( n<0, 0, A = x*O(x^n); polcoeff( eta(x^2+A)^2/eta(x+A), n)) + numdiv(n>>valuation(n, 2))) \\ Altug Alkan, Nov 15 2015
Formula
From Vladeta Jovovic, Aug 10 2004: (Start)
G.f.: Sum_{k >= 1} x^(k*(k-1)/2)/(1-x^k).
a(2^k) = 1 for k > 0. - Daniel Castle, Feb 09 2021
Extensions
a(0) = 1 added by N. J. A. Sloane, Dec 02 2020
Comments