cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054854 Number of ways to tile a 4 X n region with 1 X 1 and 2 X 2 tiles.

Original entry on oeis.org

1, 1, 5, 11, 35, 93, 269, 747, 2115, 5933, 16717, 47003, 132291, 372157, 1047181, 2946251, 8289731, 23323853, 65624397, 184640891, 519507267, 1461688413, 4112616845, 11571284395, 32557042499, 91602704493, 257733967693, 725161963867
Offset: 0

Views

Author

Silvia Heubach (silvi(AT)cine.net), Apr 21 2000

Keywords

Examples

			a(2) = 5 as there is one tiling of a 4x2 region with only 1 X 1 tiles, 3 tilings with exactly one 2 X 2 tile and one tiling consisting of two 2 X 2 tiles.
		

Crossrefs

Cf. A054855.
Column k=4 of A245013. First differences of A046672.

Programs

  • Maple
    A:= Matrix([[5,1,1],[1,1,0],[1,0,1/2]]); M:= Matrix([[2,1,0],[3,0,1],[ -2,0,0]]): a:= n->(A.M^n)[2,2]: seq(a(n), n=0..50); # Alois P. Heinz, May 18 2008
  • Mathematica
    f[{A_, B_}] := Module[{til = A, basic = B}, {Flatten[Append[til, ListConvolve[A, B]]], AppendTo[basic, 2]}]; NumOfTilings[n_] := Nest[f, {{1, 1}, {1, 4}}, n - 2][[1]] NumOfTilings[30]
    (* Second program: *)
    LinearRecurrence[{2, 3, -2}, {1, 1, 5}, 30] (* Jean-François Alcover, Jul 28 2018 *)

Formula

G.f.: (1-x)/(1-2*x-3*x^2+2*x^3). - N. J. A. Sloane, Nov 17 2002
a(n) = a(n-1)+4*a(n-2)+2*( a(n-3)+a(n-4)+...+a(0) ).
a(n) = 2*a(n-1)+3*a(n-2)-2*a(n-3). [See proofs in Mathar (a transfer matrix approach) and in Abadie et al.(direct proof).] - Keith Schneider (kschneid(AT)bulldog.unca.edu), Apr 02 2006
a(n) = Term (2,2) of matrix [5,1,1; 1,1,0; 1,0,1/2]*[2,1,0; 3,0,1; -2,0,0]^n. - Alois P. Heinz, May 18 2008
a(n) = F(n+1)^2 + Sum_{k=1..n-1} F(k)^2 * a(n-k-1), for n >= 0, where F(k) = A000045(k) (Fibonacci numbers), see Abadie, et al. - Richard S. Chang, Jan 21 2022