cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054856 Number of ways to tile a 4 X n region with 1 X 1, 2 X 2, 3 X 3 and 4 X 4 tiles.

Original entry on oeis.org

1, 1, 5, 13, 40, 117, 348, 1029, 3049, 9028, 26738, 79183, 234502, 694476, 2056692, 6090891, 18038173, 53420041, 158203433, 468519406, 1387520047, 4109140098, 12169216863, 36039131181, 106729873498, 316080480394, 936072224321
Offset: 0

Views

Author

Silvia Heubach (silvi(AT)cine.net), Apr 21 2000

Keywords

Comments

It is easy to see that the g.f. for indecomposable tilings, i.e. those that cannot be split vertically into smaller tilings, is g=z+4*z^2+2*z^3+z^4+2*z^3/(1-z); then G.f.=1/(1-g). - Emeric Deutsch, Oct 16 2006

Examples

			a(2)=5 as there is one tiling of a 4 X 2 region with only 1 X 1 tiles, 3 tilings with exactly one 2 X 2 tile and 1 tiling with exactly two 2 X 2 tiles.
		

Crossrefs

Column k=4 of A219924. - Alois P. Heinz, Dec 01 2012

Programs

  • Maple
    a[0]:=1: a[1]:=1: a[2]:=5: a[3]:=13: a[4]:=40: for n from 5 to 26 do a[n]:=2*a[n-1]+3*a[n-2]-a[n-4]-a[n-5] od: seq(a[n],n=0..26); # Emeric Deutsch, Oct 16 2006
  • Mathematica
    f[ A_ ] := Module[ {til = A, sum}, sum = 2* Apply[ Plus, Drop[ til, -4 ] ]; AppendTo[ til, A[ [ -1 ] ] + 4A[ [ -2 ] ] + 4A[ [ -3 ] ] + 3A[ [ -4 ] ] + sum ] ]; NumOfTilings[ n_ ] := Nest[ f, {1, 1, 5, 13}, n - 2 ]; NumOfTilings[ 30 ]

Formula

a(n) = a(n-1)+4*a(n-2)+4*a(n-3)+3*a(n-4)+2*( a(n-5)+a(n-6)+...+a(0)), a(0)=a(1)=1, a(2)=5, a(3)=13
a(n) = 2*a(n-1)+3*a(n-2)-a(n-4)-a(n-5). G.f.=(1-z)/((1+z)*(1-3*z+z^4)). - Emeric Deutsch, Oct 16 2006