A054858 Number of basic blocks of size 5xn for tilings with square tiles of size up to 5 X 5.
1, 7, 13, 20, 35, 66, 118, 218, 402, 738, 1358, 2498, 4594, 8450, 15542, 28586, 52578, 96706, 177870, 327154, 601730, 1106754, 2035638, 3744122, 6886514, 12666274, 23296910, 42849698, 78812882, 144959490, 266622070
Offset: 1
Examples
a(3)=7 as the nature of basic blocks requires that the tiling cannot be split vertically into smaller tilings. Thus there needs to be one 2 X 2 tile whose lower left corner is in column 1 and one whose llc is in column 2. There are 7 ways to place these two 2 X 2 tiles.
Links
- S. Heubach, Tiling an m-by-n area with squares of size up to k-by-k (m<=5), Congressus Numerantium 140 (1999), 43-64.
- Index entries for linear recurrences with constant coefficients, signature (1,1,1).
Crossrefs
Cf. A054857.
Programs
-
Mathematica
f[ {A_, B_} ] := Module[ {til = A, basic = B}, {Flatten[ Append[ til, ListConvolve[ A, B ] ]], AppendTo[ basic, B[[ -1 ]] + B[[ -2 ]] + B[[ -3 ] ]]} ]; NumOfBasicBlocks[ n_ ] := Nest[ f, {{1, 1, 8, 28, 117, 472, 1916, 7765}, {1, 7, 13, 20, 35, 66, 118, 218}}, n-2 ][[ 2 ]] NumOfBasicBlocks[ 30 ] LinearRecurrence[{1,1,1},{1,7,13,20,35,66,118,218},40] (* Harvey P. Dale, Dec 06 2018 *)
Formula
a(n) = a(n-1)+a(n-2)+a(n-3) for n>8, a(1)=1, a(2)=7, a(3)=13, a(4)=20, a(5)=35, a(6)=66, a(7)=218
G.f.: x^5+2*x^4-x^3+5*x^2-x-10+2*(-4*x+5-5*x^2)/(1-x-x^2-x^3). a(n) = 10*A000213(n)-8*A000073(n+1), n>5. [R. J. Mathar, Nov 02 2008]
Comments