cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054877 Closed walks of length n along the edges of a pentagon based at a vertex.

Original entry on oeis.org

1, 0, 2, 0, 6, 2, 20, 14, 70, 72, 254, 330, 948, 1430, 3614, 6008, 13990, 24786, 54740, 101118, 215766, 409640, 854702, 1652090, 3396916, 6643782, 13530350, 26667864, 53971350, 106914242, 215492564, 428292590, 860941798, 1714834440, 3441074654, 6863694378
Offset: 0

Views

Author

Paolo Dominici (pl.dm(AT)libero.it), May 23 2000

Keywords

Comments

In general a(n,m) = (2^n/m)*Sum_{k=0..m-1} Cos(2Pi*k/m)^n counts closed walks of length n at a vertex of the cyclic graph on m nodes C_m. Here we have the case m=5. - Herbert Kociemba, May 31 2004

Crossrefs

Programs

  • GAP
    List([0..40], n-> (2^n + 2*(-1)^n*Lucas(1,-1, n)[2])/5); # G. C. Greubel, Jul 19 2019
  • Magma
    [(2^n + 2*(-1)^n*Lucas(n))/5: n in [0..40]]; // G. C. Greubel, Jul 19 2019
    
  • Mathematica
    CoefficientList[Series[(1/5)*(1/(1-2*x) +2*(2+x)/(1+x-x^2)), {x, 0, 40}], x] (* G. C. Greubel, Jun 07 2017 *)
  • PARI
    vector(40, n, n--; f=fibonacci; (2^n + 2*(-1)^n*(f(n+1)+f(n-1) ))/5) \\ G. C. Greubel, Jun 07 2017, modified Jul 19 2019
    
  • Sage
    [(2^n + 2*(-1)^n*lucas_number2(n,1,-1))/5 for n in (0..40)] # G. C. Greubel, Jul 19 2019
    

Formula

a(n) = 2*A052964(n) for n>0.
G.f.: (1/5)*(1/(1-2*x) + 2*(2+x)/(1+x-x^2)).
5*a(n) = 2^n +2*(-1)^n*A000032(n).
a(n) = (2^n/5)*Sum_{k=0..4} cos(2*Pi*k/5)^n. - Herbert Kociemba, May 31 2004
Recurrence: a(n) = 5*(a(n-2) - a(n-4)) + 2*a(n-5). - Herbert Kociemba, Jun 04 2004