cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054887 Layer counting sequence for hyperbolic tessellation by cuspidal triangles of angles (Pi/3, Pi/5, Pi/7).

Original entry on oeis.org

1, 3, 6, 11, 20, 36, 64, 113, 200, 354, 626, 1107, 1958, 3464, 6128, 10839, 19172, 33913, 59988, 106111, 187696, 332009, 587280, 1038820, 1837534, 3250353, 5749442, 10169998, 17989372, 31820803, 56286764, 99563792, 176115092
Offset: 1

Views

Author

Paolo Dominici (pl.dm(AT)libero.it), May 23 2000

Keywords

Comments

The layer sequence is the sequence of the cardinalities of the layers accumulating around a ( finite-sided ) polygon of the tessellation under successive side-reflections; see the illustration accompanying A054888.

Crossrefs

Cf. A054888.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( x*(1+x)*(1-x^3)*(1-x^5)*(1-x^7)/(1-2*x+x^4+x^6-x^10-x^12+2*x^15-x^16) )); // G. C. Greubel, Feb 07 2023
    
  • Mathematica
    LinearRecurrence[{0,0,2,2,4,3,4,2,2,0,0,-1}, {1,3,6,11,20,36,64,113, 200,354,626,1107,1958}, 41] (* G. C. Greubel, Feb 07 2023 *)
  • Sage
    def A054887_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x*(1+x)*(1-x^3)*(1-x^5)*(1-x^7)/(1-2*x+x^4+x^6-x^10-x^12+2*x^15-x^16) ).list()
    a=A054887_list(40); a[1:] # G. C. Greubel, Feb 07 2023

Formula

G.f.: x*(1+x)*(1-x^3)*(1-x^5)*(1-x^7)/(1-2*x+x^4+x^6-x^10-x^12+2*x^15-x^16).