A054889 Layer counting sequence for hyperbolic tessellation by regular pentagons of angle 2*Pi/5.
1, 5, 20, 70, 245, 860, 3015, 10570, 37060, 129935, 455560, 1597225, 5599980, 19633910, 68837825, 241350100, 846189875, 2966799290, 10401800220, 36469419475, 127864266640, 448300820765, 1571773187140, 5510743762630
Offset: 1
Links
- Georg Fischer, Table of n, a(n) for n = 1..500
- Index entries for Coordination Sequences [A layer sequence is a kind of coordination sequence. - _N. J. A. Sloane_, Nov 20 2022]
- Index entries for linear recurrences with constant coefficients, signature (3,1,3,-1).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 40); Coefficients(R!( x*(1+2*x+4*x^2+2*x^3+x^4)/(1-3*x-x^2-3*x^3+x^4) )); // G. C. Greubel, Feb 08 2023 -
Mathematica
LinearRecurrence[{3,1,3,-1},{1,5,20,70,245},40] (* Georg Fischer, Apr 13 2020 *)
-
Sage
def A054889_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( x*(1+2*x+4*x^2+2*x^3+x^4)/(1-3*x-x^2-3*x^3+x^4) ).list() a=A054889_list(40); a[1:] # G. C. Greubel, Feb 08 2023
Formula
G.f.: x*(1+2*x+4*x^2+2*x^3+x^4)/(1-3*x-x^2-3*x^3+x^4).
Extensions
a(21) inserted by Georg Fischer, Apr 13 2020
Comments