A054897 a(n) = Sum_{k>0} floor(n/8^k).
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12
Offset: 0
Keywords
Examples
a(100) = 13. a(10^3) = 141. a(10^4) = 1427. a(10^5) = 14284. a(10^6) = 142855. a(10^7) = 1428569. a(10^8) = 14285710. a(10^9) = 142857138.
Links
- Hieronymus Fischer, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Magma
m:=8; function a(n) // a = A054897 if n eq 0 then return n; else return a(Floor(n/m)) + Floor(n/m); end if; end function; [a(n): n in [0..103]]; // G. C. Greubel, Apr 28 2023
-
Mathematica
Table[t=0; p=8; While[s=Floor[n/p]; t=t+s; s>0, p *= 8]; t, {n,0,100}]
-
Python
def A054897(n): return (n-sum(int(d) for d in oct(n)[2:]))//7 # Chai Wah Wu, Jul 09 2022
-
SageMath
m=8 # a = A054897 def a(n): return 0 if (n==0) else a(n//m) + (n//m) [a(n) for n in range(104)] # G. C. Greubel, Apr 28 2023
Formula
a(n) = floor(n/8) + floor(n/64) + floor(n/512) + floor(n/4096) + ....
a(n) = (n - A053829(n))/7.
From Hieronymus Fischer, Aug 14 2007: (Start)
Recurrence:
a(n) = floor(n/8) + a(floor(n/8));
a(8*n) = n + a(n);
a(n*8^m) = n*(8^m-1)/7 + a(n).
a(k*8^m) = k*(8^m-1)/7, for 0 <= k < 8, m >= 0.
Asymptotic behavior:
a(n) = n/7 + O(log(n)),
a(n+1) - a(n) = O(log(n)); this follows from the inequalities below.
a(n) <= (n-1)/7; equality holds for powers of 8.
a(n) >= (n-7)/7 - floor(log_8(n)); equality holds for n=8^m-1, m>0.
lim inf (n/7 - a(n)) = 1/7, for n -> oo.
lim sup (n/7 - log_8(n) - a(n)) = 0, for n -> oo.
lim sup (a(n+1) - a(n) - log_8(n)) = 0, for n -> oo.
G.f.: g(x) = ( Sum_{k>0} x^(8^k)/(1-x^(8^k)) )/(1-x). (End)
Partial sums of A244413. - R. J. Mathar, Jul 08 2021
Extensions
Examples added by Hieronymus Fischer, Jun 06 2012
Comments