A054899 a(n) = Sum_{k>0} floor(n/10^k).
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 11, 11, 11
Offset: 0
Keywords
Examples
a(11) = 1 a(111) = 12. a(1111) = 123. a(11111) = 1234. a(111111) = 12345. a(1111111) = 123456. a(11111111) = 1234567. a(111111111) = 12345678. a(1111111111) = 123456789.
Links
- Hieronymus Fischer, Table of n, a(n) for n = 0..10000
- Robert K. Kennedy, Curtis N. Cooper, Vladimir Drobot, and Fred Hickling, On the natural density of the range of the terminating nines function, International Journal of Mathematics and Mathematical Sciences, Vol. 12, No. 4 (1989), pp. 805-808.
- Eric Weisstein's World of Mathematics, Multifactorial.
Crossrefs
Programs
-
Magma
m:=10; function a(n) // a = A054899, m = 10 if n eq 0 then return 0; else return a(Floor(n/m)) + Floor(n/m); end if; end function; [a(n): n in [0..103]]; // G. C. Greubel, Apr 28 2023
-
Mathematica
Table[t=0; p=10; While[s=Floor[n/p]; t=t+s; s>0, p*=10]; t, {n,0,100}]
-
PARI
a(n)=my(s);while(n\=10,s+=n);s \\ Charles R Greathouse IV, Jul 19 2011
-
SageMath
m=10 # a = A054899 def a(n): return 0 if (n==0) else a(n//m) + (n//m) [a(n) for n in range(104)] # G. C. Greubel, Apr 28 2023
Formula
a(n) = floor(n/10) + floor(n/100) + floor(n/1000) + ...
a(n) = (n - A007953(n))/9.
From Hieronymus Fischer, Jun 14 2007, Jun 25 2007, and Aug 13 2007: (Start)
a(n) = Sum_{k>0} floor(n/10^k).
a(n) = Sum_{k=10..n} Sum_{j|k, j>=10} ( floor(log_10(j)) -floor(log_10(j-1)) ).
G.f.: g(x) = ( Sum_{k>0} x^(10^k)/(1-x^(10^k)) )/(1-x).
G.f. expressed in terms of Lambert series:
g(x) = L[b(k)](x)/(1-x) where L[b(k)](x) = Sum_{k>=0} b(k)*x^k/(1-x^k) is a Lambert series with b(k)=1, if k>1 is a power of 10, else b(k)=0.
G.f.: g(x) = ( Sum_{k>0} c(k)*x^k )/(1-x), where c(k) = Sum_{j>1, j|k} (floor(log_10(j)) - floor(log_10(j-1)) ).
a(n) = Sum_{k=0..floor(log_10(n))} ds_10(floor(n/10^k))*10^k - n where ds_10(x) = digital sum of x in base 10.
a(n) = Sum_{k=0..floor(log_10(n))} A007953(floor(n/10^k))*10^k - n.
Recurrence:
a(n) = floor(n/10) + a(floor(n/10)).
a(10*n) = n + a(n).
a(n*10^m) = n*(10^m-1)/9 + a(n).
a(k*10^m) = k*(10^m-1)/9, for 0 <= k < 10, m >= 0.
Asymptotic behavior:
a(n) = n/9 + O(log(n)),
a(n+1) - a(n) = O(log(n)), which follows from the inequalities below.
a(n) <= (n - 1)/9; equality holds for powers of 10.
a(n) >= n/9 - 1 - floor(log_10(n)); equality holds for n=10^m-1, m>0.
lim inf (n/9 - a(n)) = 1/9, for n --> oo.
lim sup (n/9 - log_10(n) - a(n)) = 0, for n --> oo.
lim sup (a(n+1) - a(n) - log_10(n)) = 0, for n --> oo. (End)
Extensions
An incorrect g.f. was deleted by N. J. A. Sloane, Sep 13 2009
Examples added by Hieronymus Fischer, Jun 06 2012
Comments