A054906 Smallest number x such that sigma(x+2n) = sigma(x)+2n (first definition).
3, 3, 5, 3, 3, 5, 3, 3, 5, 3, 7, 5, 3, 3, 7, 5, 3, 5, 3, 3, 5, 3, 7, 5, 3, 7, 5, 3, 3, 7, 5, 3, 5, 3, 3, 7, 5, 3, 5, 3, 7, 5, 3, 13, 7, 5, 3, 5, 3, 3, 5, 3, 3, 5, 3, 19, 13, 11, 13, 7, 5, 3, 5, 3, 7, 5, 3, 3, 11, 11, 7, 5, 3, 3, 7, 5, 3, 7, 5, 3, 5, 3, 7, 5, 3, 7, 5, 3, 3, 11, 11, 7, 5, 3, 3, 5, 3, 3, 13
Offset: 1
Keywords
Examples
n-th primes 2,3,5,7,11,13, are solutions to sigma(x+2n)=2n+sigma(x) at 2n=2,6,22,116,88.
References
- Sivaramakrishnan,R.(1989):Classical Theory of Arithmetical Functions. Marcel Dekker,Inc., New York.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A054906 := proc(n) local x; for x from 0 do if numtheory[sigma](x+2*n) = numtheory[sigma](x)+2*n then return x; end if; end do: end proc: seq(A054906(n),n=1..40); # R. J. Mathar, Sep 23 2016
-
Mathematica
Table[x = 1; While[DivisorSigma[1, x + 2 n] != DivisorSigma[1, x] + 2 n, x++]; x, {n, 100}] (* Michael De Vlieger, Feb 05 2017 *)
-
PARI
a(n) = my(x = 1); while(sigma(x+2*n) != sigma(x)+2*n, x++); x; \\ Michel Marcus, Dec 17 2013
Comments