A054980 Primitive e-perfect numbers: primitive elements of the e-perfect numbers (A054979).
36, 1800, 2700, 17424, 1306800, 4769856, 238492800, 357739200, 54531590400
Offset: 1
Examples
180 = 36*5 (nonprimitive). 252 = 36*7 (nonprimitive). 1260 = 36*5*7 (nonprimitive). 1800 = 36*5^2 (primitive, 5^2 not squarefree and coprime to 36).
References
- Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B17, pp. 110-111.
- József Sándor, Dragoslav S. Mitrinovic and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter III, p. 116-117.
Links
- Andrew V. Lelechenko, Exponential and infinitary divisors, Ukrainian Mathematical Journal, Vol. 68, No. 8 (2017), pp. 1222-1237; arXiv preprint, arXiv:1405.7597 [math.NT], 2014.
- Jan Munch Pedersen, Exponential Perfect Numbers.
- E. G. Straus and M. V. Subbarao, On exponential divisors, Duke Math. J., Vol. 41 (1974), pp. 465-471
- Eric Weisstein's World of Mathematics, e-Perfect Number.
Programs
-
PARI
eperfect(n)=my(f=factor(n));prod(i=1,#f[,1],sumdiv(f[i,2],d, f[i,1]^d))==2*n is(n)=if(!eperfect(n),0,my(f=factor(n));for(i=1,#f[,1],if(f[i,2]==1&&eperfect(n/f[i,1]),return(0)));1) \\ Charles R Greathouse IV, Nov 22 2011
Extensions
a(9) from Donovan Johnson, Nov 22 2011
Comments