cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055008 Numbers k such that gcd(phi(k), sigma(k)) = 1 with phi = A000010, sigma = A000203.

Original entry on oeis.org

1, 2, 4, 8, 9, 16, 25, 32, 36, 50, 64, 81, 100, 121, 128, 144, 225, 242, 256, 289, 324, 400, 484, 512, 529, 576, 578, 625, 729, 800, 841, 900, 1024, 1058, 1089, 1156, 1250, 1296, 1600, 1681, 1682, 1936, 2025, 2048, 2116, 2209, 2304, 2312, 2401, 2500, 2601
Offset: 1

Views

Author

Labos Elemer, May 31 2000

Keywords

Comments

The asymptotic density of this sequence is 0 (Dressler, 1974). - Amiram Eldar, Jul 23 2020
Conjecture: Every term is a square or twice a square. - Jason Yuen, May 16 2024
The conjecture is true: If k is neither a square nor twice a square (i.e., in A028983), then sigma(k) is even. Since gcd(phi(k), sigma(k)) = 1, then phi(k) must be odd, but phi(k) is odd only for k = 1 and 2. - Amiram Eldar, May 19 2024

Examples

			For n = 484, phi(484) = 220 = 2*2*5*11, sigma(484) = 931 = 7*7*19, and gcd(220,931) = 1.
		

Crossrefs

Programs

  • Mathematica
    Select[Range@ 2700, CoprimeQ[EulerPhi@ #, DivisorSigma[1, #]] &] (* Michael De Vlieger, Feb 05 2017 *)
    Select[With[{max = 51}, Union[Array[#^2 &, max], Array[2*#^2 &, Floor[max / Sqrt[2]]]]], CoprimeQ[EulerPhi[#], DivisorSigma[1, #]] &] (* Amiram Eldar, May 19 2024 *)
  • PARI
    is(n)=gcd(sigma(n),eulerphi(n))==1 \\ Charles R Greathouse IV, Feb 19 2013

Extensions

Incorrect comment removed by Charles R Greathouse IV, Feb 19 2013