cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A073815 Least number x such that gcd(phi(x), sigma(x)) = n.

Original entry on oeis.org

1, 3, 18, 12, 200, 14, 3364, 15, 722, 328, 9801, 42, 25281, 116, 1800, 165, 36992, 810, 4414201, 88, 196, 29161, 541696, 35, 2928200, 1413, 103968, 172, 98942809, 488, 1547536, 336, 19602, 17536, 814088, 370, 49042009, 55297, 1521, 319, 3150464641
Offset: 1

Views

Author

Labos Elemer, Nov 12 2002

Keywords

Comments

Values are frequently identical to terms of A077102. Since gcd(a,b) and gcd(a+b,a-b) may differ, so may the smallest solutions. A077102(m) and a(m) differ at m = 1, 2, 4, 8, 16, 28, 32, 40, etc.

Crossrefs

Programs

  • Mathematica
    f[x_] := Apply[GCD, {DivisorSigma[1, x], EulerPhi[x]}] t=Table[0, {100}]; Do[s=f[n]; If[s<101&&t[[s]]==0, t[[s]]=n], {n, 1, 10^13}];
  • PARI
    a(n)=my(x=n);while(gcd(eulerphi(x),sigma(x))!=n, x++); x \\ Charles R Greathouse IV, Dec 09 2013

Formula

a(n) = Min{x; A055008(x)=n}. a(n)=Min{x; gcd(A000203(x), A000010(x))=n}
a(n) = Min{x: A023897(x)= n}, smallest balanced number (A020492) for which the quotient equals n.

A065299 Numbers k such that sigma(k)*phi(k) is squarefree.

Original entry on oeis.org

1, 2, 4, 9, 121, 242, 529, 1058, 2209, 3481, 4418, 5041, 6889, 6962, 10082, 11449, 13778, 17161, 22898, 27889, 32041, 34322, 51529, 55778, 57121, 64082, 96721, 103058, 114242, 120409, 128881, 146689, 175561, 185761, 193442, 196249, 218089
Offset: 1

Views

Author

Labos Elemer, Oct 29 2001

Keywords

Examples

			All solutions are either squares or twice squares. Proper subset of A055008 or A028982. Several squares (of primes) and 2*squares are not here. E.g., 242 is here because phi(242) = 110, sigma(242) = 399, 2*5*11*3*7*19 is squarefree; 18 is not here, since 2*3*3*13 is not squarefree.
		

Crossrefs

Programs

  • Mathematica
    a[x_] := Abs[MoebiusMu[DivisorSigma[1, x]*EulerPhi[x]]] Do[s=as[n]; If[Equal[s, 1], Print[{n, Sqrt[n]}]], {n, 1, 1000000}]
    Select[Range[250000],SquareFreeQ[DivisorSigma[1,#]*EulerPhi[#]]&] (* Harvey P. Dale, Jul 15 2015 *)
  • PARI
    n=0; for (m = 1, 10^9, s=abs(moebius(sigma(m)*eulerphi(m))); if (s==1, write("b065299.txt", n++, " ", m); if (n==500, return))) \\ Harry J. Smith, Oct 15 2009
    
  • PARI
    is(f)=my(n=#f~, v=List()); for(i=1,n, if(f[i,1]>2, listput(v,f[i,1]-1)); if(f[i,2]>2, return(0), f[i,2]>1, listput(v,f[i,1])); listput(v, (f[i,1]^(f[i,2]+1)-1)/(f[i,1]-1))); for(i=2,#v, for(j=1,i-1, if(gcd(v[i],v[j])>1, return(0)))); for(i=1,#v, if(!issquarefree(v[i]), return(0))); 1
    sq(f)=f[,2]*=2; f
    double(f)=if(#f~ && f[1,1]==2, f[1,2]++, f=concat([2,1],f)); f
    list(lim)=my(v=List()); forsquarefree(n=1,sqrtint(lim\1), if(is(sq(n[2])), listput(v,n[1]^2))); forsquarefree(n=1,sqrtint(lim\2), if(is(double(sq(n[2]))), listput(v,2*n[1]^2))); Set(v) \\ Charles R Greathouse IV, Feb 05 2018

Formula

Solutions to abs(A008683(A000203(x)*A000010(x))) = 1.

A225983 Numbers k such that gcd(phi(k), tau(k)) = 1.

Original entry on oeis.org

1, 2, 4, 16, 25, 64, 81, 100, 121, 256, 289, 484, 529, 729, 841, 1024, 1156, 1296, 1600, 1681, 2116, 2209, 2401, 2809, 3025, 3364, 3481, 4096, 4624, 5041, 5184, 6400, 6724, 6889, 7225, 7744, 7921, 8464, 8836, 10201, 11236, 11449, 11664, 12100, 12769, 13225
Offset: 1

Views

Author

Paolo P. Lava, May 22 2013

Keywords

Examples

			If n = 13924 then phi(n) = 6844 = 2^2*29*59 and tau(n) = 9 = 3^2. There is no common prime factor.
		

Crossrefs

Programs

  • Maple
    with(numtheory); A225983:=proc(q) local n;
    for n from 1 to q do if gcd(tau(n),phi(n))=1 then print(n);
    fi; od; end: A225983(10^6);
  • Mathematica
    t = {}; n = 0; While[Length[t] < 100, n++; If[GCD[EulerPhi[n], DivisorSigma[0, n]] == 1, AppendTo[t, n]]]; t (* T. D. Noe, May 22 2013 *)

A248861 Numbers k such that phi(k)^phi(k) == 1 (mod sigma(k)).

Original entry on oeis.org

1, 2, 8, 36, 128, 225, 289, 578, 900, 2025, 2601, 3600, 10404, 32768, 41616, 45369, 57600, 242064, 665856, 725904, 783225, 1134225, 1140624, 1782225, 1988100, 2903616, 3132900, 4862025, 6155361, 6275025, 7128900, 7868025, 8625969, 10208025, 13505625
Offset: 1

Views

Author

Farideh Firoozbakht, Dec 12 2014

Keywords

Comments

2^m is a term of the sequence if and only if m=2^j-1 where j is a nonnegative integer. Hence the sequence is infinite.
289 is a term of the sequence which is of the form p^2 where p is prime. What is the next such term?
578 is a term of the sequence which is not of the form 2^m or m^2. What is the next such term?
A248862 gives primes p such that 900*p^2 is a term of the sequence.
Subsequence of A055008. - Jason Yuen, Jul 01 2024

Crossrefs

Programs

  • Mathematica
    Prepend[Select[Range[30000], Mod[EulerPhi[#]^EulerPhi[#], DivisorSigma[1, #]] == 1 &], 1] (* Michael De Vlieger, Dec 13 2014 *)
  • PARI
    isok(n) = my(in = eulerphi(n)); lift(Mod(in, sigma(n))^in - 1) == 0; \\ Michel Marcus, Dec 13 2014

A260963 Numbers n such that gcd(sigma(n), n*(n+1)/2 - sigma(n)) = 1, where sigma(n) is sum of positive divisors of n.

Original entry on oeis.org

1, 4, 9, 10, 16, 21, 22, 25, 34, 36, 46, 49, 57, 58, 64, 70, 81, 82, 85, 93, 94, 100, 106, 118, 121, 129, 130, 133, 142, 144, 154, 166, 169, 178, 201, 202, 205, 214, 217, 225, 226, 237, 238, 250, 253, 256, 262, 265, 274, 289, 298, 301, 309, 310, 322, 324, 325
Offset: 1

Views

Author

Paolo P. Lava, Aug 27 2015

Keywords

Examples

			sigma(10) = 18, 10*11/2 - sigma(10) = 55 - 18 = 37 and gcd(18,37) = 1 because 18 = 2*9 and 37 is prime.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local n; for n from 1 to q do
    if gcd(sigma(n),n*(n+1)/2-sigma(n))=1 then print(n); fi; od; end: P(10^9);
  • Mathematica
    Select[Range@ 360, GCD[DivisorSigma[1, #], # (# + 1)/2 - DivisorSigma[1, #]] == 1 &] (* Michael De Vlieger, Aug 27 2015 *)

A077103 Numbers n such that gcd(a,b) is not equal to gcd(a+b,a-b), where a=sigma(n)=A000203(n) and b=phi(n)=A000010(n).

Original entry on oeis.org

1, 2, 12, 15, 30, 39, 44, 55, 56, 76, 78, 87, 95, 99, 110, 111, 125, 140, 143, 147, 159, 171, 172, 174, 175, 183, 184, 190, 198, 215, 216, 222, 236, 247, 250, 252, 264, 268, 286, 287, 294, 295, 303, 315, 318, 319, 327, 332, 335, 336, 342, 350, 357, 363, 364
Offset: 1

Views

Author

Labos Elemer, Nov 12 2002

Keywords

Examples

			n=76: a=sigma(76)=140, b=phi(76)=36, a+b=176, a-b=104, gcd(a,b) = gcd(140,36) = 4 < gcd(a+b,a-b) = gcd(176,104) = 8.
		

Crossrefs

Programs

  • Mathematica
    Do[s=GCD[a=DivisorSigma[1, n], b=EulerPhi[n]]; s1=GCD[a+b, a-b]; If[ !Equal[s, s1], Print[{n, a, b, a+b, a-b, s, s1, s1/s}]], {n, 1, 1000}]

Formula

gcd(A000010(n), A000203(n)) is not equal to gcd(A065387(n), A051612(n)); or A055008(n) is not equal to A077099(n).
Showing 1-6 of 6 results.