A077104 Duplicate of A073815.
1, 3, 18, 12, 200, 14, 3364, 15, 722, 328, 9801, 42, 25281, 116, 1800, 165, 36992, 810
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
Table[Apply[GCD, {w, DivisorSigma[1, w], EulerPhi[w]}], {w, 1, 128}]
A074389(n) = gcd([n, sigma(n), eulerphi(n)]); \\ Antti Karttunen, Sep 07 2018
n=6: a(6)=6 because gcd(6, sigma(6))=6 and a(6)=6 is the smallest.
A074391:=func; [A074391(n): n in[1..100]] // Jaroslav Krizek, Sep 23 2014
f:= proc(n) local k; for k from n by n do if igcd(k, numtheory:-sigma(k))=n then return k fi od end proc: map(f, [$1..100]); # Robert Israel, Feb 11 2020
f[x_] := GCD[DivisorSigma[1, x], x] t=Table[0, {100}]; Do[s=f[n]; If[s<101&&t[[s]]==0, t[[s]]=n], {n, 1, 1000000}];
a(n) = my(k=1); while (gcd(sigma(k), k) != n, k++); k; \\ Michel Marcus, Jan 13 2015
For n = 79: a(79) = 979837 because GCD(979837,998718,961272) = 79 and 979837 is the smallest.
f[x_] := GCD[DivisorSigma[1, x], EulerPhi[x], x]; t=Table[0, {100}]; Do[s=f[n]; If[s<101&&t[[s]]==0, t[[s]]=n], {n, 1, 1000000}]; t
lista(len) = {my(v = vector(len), c = 0, k = 1, f, i); while(c < len, f = factor(k); i = gcd([k, sigma(k), eulerphi(k)]); if(i <= len && v[i] == 0, c++; v[i] = k); k++); v;} \\ Amiram Eldar, Nov 14 2024
For n = 85: a(85) = 924800 = 128*5*5*17*17; sigma(924800) = 2426835 = 3*5*17*31*307; phi(924800) = 348160 = 4096*5*17; common prime factor 5.17 = 85.
ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] t=Table[0, {100}]; Do[s=Apply[Times, Intersection [ba[EulerPhi[n]], ba[DivisorSigma[1, n]]]]; If[s<101&&t[[s]]==0, t[[s]]=n], {n, 1, 1000000}]; t
Comments