cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A074390 a(n) is the least number k that A074389(k) = n.

Original entry on oeis.org

1, 6, 18, 12, 200, 42, 196, 56, 459, 950, 5203, 396, 9243, 980, 1800, 336, 19363, 270, 13357, 600, 1764, 10406, 72473, 168, 18625, 34814, 4293, 812, 145493, 1350, 15376, 992, 19602, 38726, 41615, 1836, 99937, 26714, 1521, 440, 274003, 3822, 475193
Offset: 1

Views

Author

Labos Elemer, Aug 23 2002

Keywords

Examples

			For n = 79: a(79) = 979837 because GCD(979837,998718,961272) = 79 and 979837 is the smallest.
		

Crossrefs

Programs

  • Mathematica
    f[x_] := GCD[DivisorSigma[1, x], EulerPhi[x], x]; t=Table[0, {100}]; Do[s=f[n]; If[s<101&&t[[s]]==0, t[[s]]=n], {n, 1, 1000000}]; t
  • PARI
    lista(len) = {my(v = vector(len), c = 0, k = 1, f, i); while(c < len, f = factor(k); i = gcd([k, sigma(k), eulerphi(k)]); if(i <= len && v[i] == 0, c++; v[i] = k); k++); v;} \\ Amiram Eldar, Nov 14 2024

Formula

a(n) = Min{x; GCD(x, sigma(x), phi(x)) = n} = Min{x; GCD(x, A000005(x), A000010(x)) = n}.

A318459 a(n) = gcd(n, tau(n), phi(n)), where tau = A000005 and phi = A000010.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 4, 3, 2, 1, 2, 1, 2, 1, 1, 1, 6, 1, 2, 1, 2, 1, 8, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 8, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 3, 1, 1, 2, 1, 2, 1, 2, 1, 12, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 12, 1, 2, 1, 8, 1, 6, 1, 2, 1, 2, 1, 4, 1, 2, 3, 1, 1, 2, 1, 8, 1
Offset: 1

Views

Author

Antti Karttunen, Sep 07 2018, after Labos Elemer's A074389

Keywords

Crossrefs

Programs

  • Mathematica
    Table[GCD[n,DivisorSigma[0,n],EulerPhi[n]],{n,110}] (* Harvey P. Dale, Jul 30 2019 *)
  • PARI
    A318459(n) = gcd([n, numdiv(n), eulerphi(n)]);

Formula

a(n) = gcd(n, A000005(n), A000010(n)).
a(n) = gcd(n,A009213(n)) = gcd(A000005(n),A009195(n)) = gcd(A000010(n),A009191(n)).

A074465 a(n) = gcd(n^2, sigma(n^2), phi(n^2)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 39, 1, 1, 21, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 7, 39, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 7, 11, 1, 1, 1, 1
Offset: 1

Views

Author

Labos Elemer, Aug 23 2002

Keywords

Comments

a(n) is odd because sigma(n^2) is odd;.

Examples

			For n=14: gcd(196,399,84) = 7 = a(14).
		

Crossrefs

Programs

  • Mathematica
    Table[Apply[GCD, {w^2, DivisorSigma[1, w^2], EulerPhi[w^2]}], {w, 1, 128}]
  • PARI
    A074465(n) = gcd([n^2, sigma(n^2), eulerphi(n^2)]); \\ Antti Karttunen, Sep 07 2018

Formula

a(n) = A074389(n^2).

A074466 a(n) = gcd(n^3, sigma(n^3), phi(n^3)).

Original entry on oeis.org

1, 1, 1, 1, 1, 24, 1, 1, 1, 20, 1, 8, 1, 8, 15, 1, 1, 3, 1, 4, 1, 8, 1, 24, 1, 4, 1, 16, 1, 1800, 1, 1, 3, 4, 25, 1, 1, 8, 1, 4, 1, 24, 1, 8, 3, 8, 1, 8, 1, 5, 9, 4, 1, 12, 1, 16, 1, 4, 1, 480, 1, 8, 1, 1, 65, 72, 1, 4, 3, 200, 1, 3, 1, 4, 5, 8, 1, 24, 1, 4, 1, 4, 1, 64, 5, 8, 3, 88, 1, 180, 7, 16, 1
Offset: 1

Views

Author

Labos Elemer, Aug 23 2002

Keywords

Examples

			n=10: gcd[1000,2340,400] = 20 = a(10).
		

Crossrefs

Programs

  • Magma
    [Gcd(n^3, Gcd(SumOfDivisors(n^3), EulerPhi(n^3))): n in [1..100]]; // Vincenzo Librandi, Sep 20 2018
  • Mathematica
    Table[Apply[GCD, {w^3, DivisorSigma[1, w^3], EulerPhi[w^3]}], {w, 1, 128}]
    GCD[#,DivisorSigma[1,#],EulerPhi[#]]&/@(Range[100]^3) (* Harvey P. Dale, Nov 03 2024 *)
  • PARI
    A074466(n) = gcd([n^3, sigma(n^3), eulerphi(n^3)]); \\ Antti Karttunen, Sep 07 2018
    

Formula

a(n) = A074389(n^3).

A372569 Lexicographically earliest infinite sequence such that a(i) = a(j) => A009194(i) = A009194(j), A009195(i) = A009195(j) and A009223(i) = A009223(j), for all i, j >= 1.

Original entry on oeis.org

1, 1, 2, 3, 2, 4, 2, 5, 6, 7, 2, 8, 2, 9, 10, 11, 2, 12, 2, 13, 14, 7, 2, 15, 16, 9, 17, 18, 2, 19, 2, 20, 21, 7, 22, 23, 2, 9, 24, 25, 2, 26, 2, 8, 27, 7, 2, 28, 29, 30, 10, 13, 2, 31, 32, 33, 14, 7, 2, 34, 2, 9, 35, 36, 37, 38, 2, 13, 21, 39, 2, 40, 2, 9, 41, 8, 37, 42, 2, 43, 44, 7, 2, 45, 46, 9, 10, 47, 2, 48, 49, 8, 14, 7, 50, 51, 2, 52, 53, 54, 2, 19, 2
Offset: 1

Views

Author

Antti Karttunen, May 25 2024

Keywords

Comments

Restricted growth sequence transform of the triple [A009194(n), A009195(n), A009223(n)].
For all i, j: A372570(i) = A372570(j) => a(i) = a(j) => A074389(i) = A074389(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    Aux372569(n) = [gcd(n, sigma(n)), gcd(n, eulerphi(n)), gcd(eulerphi(n), sigma(n))];
    v372569 = rgs_transform(vector(up_to, n, Aux372569(n)));
    A372569(n) = v372569[n];
Showing 1-5 of 5 results.