cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A074389 a(n) = gcd(n, sigma(n), phi(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 4, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 4, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 6, 1, 4, 3, 2, 1, 4, 1, 1, 1, 2, 1, 6, 1, 8, 1, 2, 1, 4, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 4, 1, 6, 1, 2, 1, 2, 1, 4, 1, 2, 1, 4, 1, 6, 1, 4, 1, 2, 1, 4, 1, 1, 3, 1, 1, 2, 1, 2, 3
Offset: 1

Views

Author

Labos Elemer, Aug 23 2002

Keywords

Crossrefs

In the old definition the erroneously given formula gcd(n, A000005(n), A000010(n)) is now sequence A318459. - Antti Karttunen, Sep 07 2018

Programs

  • Mathematica
    Table[Apply[GCD, {w, DivisorSigma[1, w], EulerPhi[w]}], {w, 1, 128}]
  • PARI
    A074389(n) = gcd([n, sigma(n), eulerphi(n)]); \\ Antti Karttunen, Sep 07 2018

Formula

a(n) = gcd(n, A000010(n), A000203(n)).
a(n) = gcd(n, A009223(n)). - Antti Karttunen, Sep 07 2018

Extensions

Name corrected by Antti Karttunen, Sep 07 2018

A074466 a(n) = gcd(n^3, sigma(n^3), phi(n^3)).

Original entry on oeis.org

1, 1, 1, 1, 1, 24, 1, 1, 1, 20, 1, 8, 1, 8, 15, 1, 1, 3, 1, 4, 1, 8, 1, 24, 1, 4, 1, 16, 1, 1800, 1, 1, 3, 4, 25, 1, 1, 8, 1, 4, 1, 24, 1, 8, 3, 8, 1, 8, 1, 5, 9, 4, 1, 12, 1, 16, 1, 4, 1, 480, 1, 8, 1, 1, 65, 72, 1, 4, 3, 200, 1, 3, 1, 4, 5, 8, 1, 24, 1, 4, 1, 4, 1, 64, 5, 8, 3, 88, 1, 180, 7, 16, 1
Offset: 1

Views

Author

Labos Elemer, Aug 23 2002

Keywords

Examples

			n=10: gcd[1000,2340,400] = 20 = a(10).
		

Crossrefs

Programs

  • Magma
    [Gcd(n^3, Gcd(SumOfDivisors(n^3), EulerPhi(n^3))): n in [1..100]]; // Vincenzo Librandi, Sep 20 2018
  • Mathematica
    Table[Apply[GCD, {w^3, DivisorSigma[1, w^3], EulerPhi[w^3]}], {w, 1, 128}]
    GCD[#,DivisorSigma[1,#],EulerPhi[#]]&/@(Range[100]^3) (* Harvey P. Dale, Nov 03 2024 *)
  • PARI
    A074466(n) = gcd([n^3, sigma(n^3), eulerphi(n^3)]); \\ Antti Karttunen, Sep 07 2018
    

Formula

a(n) = A074389(n^3).
Showing 1-2 of 2 results.