cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A009191 a(n) = gcd(n, d(n)), where d(n) is the number of divisors of n (A000005).

Original entry on oeis.org

1, 2, 1, 1, 1, 2, 1, 4, 3, 2, 1, 6, 1, 2, 1, 1, 1, 6, 1, 2, 1, 2, 1, 8, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 9, 1, 2, 1, 8, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 8, 1, 2, 1, 12, 1, 2, 3, 1, 1, 2, 1, 2, 1, 2, 1, 12, 1, 2, 3, 2, 1, 2, 1, 10, 1, 2, 1, 12, 1, 2, 1, 8, 1, 6, 1, 2, 1, 2, 1, 12, 1, 2, 3, 1, 1, 2, 1, 8, 1
Offset: 1

Views

Author

Keywords

Comments

a(A046642(n)) = 1.
First occurrence of k: 1, 2, 9, 8, 400, 12, 3136, 24, 36, 80, 123904, 60, 692224, 448, 2025, 384, .... Conjecture: each k is present. - Robert G. Wilson v, Mar 27 2013
Conjecture is true. See David A. Corneth's comment in A324553. - Antti Karttunen, Mar 06 2019

Crossrefs

Cf. A046642 (positions of ones), A324553 (position of the first occurrence of each n).

Programs

Formula

a(n) = gcd(n, A000005(n)) = gcd(n, A049820(n)). - Antti Karttunen, Sep 25 2018

A074389 a(n) = gcd(n, sigma(n), phi(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 4, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 4, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 6, 1, 4, 3, 2, 1, 4, 1, 1, 1, 2, 1, 6, 1, 8, 1, 2, 1, 4, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 4, 1, 6, 1, 2, 1, 2, 1, 4, 1, 2, 1, 4, 1, 6, 1, 4, 1, 2, 1, 4, 1, 1, 3, 1, 1, 2, 1, 2, 3
Offset: 1

Views

Author

Labos Elemer, Aug 23 2002

Keywords

Crossrefs

In the old definition the erroneously given formula gcd(n, A000005(n), A000010(n)) is now sequence A318459. - Antti Karttunen, Sep 07 2018

Programs

  • Mathematica
    Table[Apply[GCD, {w, DivisorSigma[1, w], EulerPhi[w]}], {w, 1, 128}]
  • PARI
    A074389(n) = gcd([n, sigma(n), eulerphi(n)]); \\ Antti Karttunen, Sep 07 2018

Formula

a(n) = gcd(n, A000010(n), A000203(n)).
a(n) = gcd(n, A009223(n)). - Antti Karttunen, Sep 07 2018

Extensions

Name corrected by Antti Karttunen, Sep 07 2018

A009213 a(n) = gcd(d(n), phi(n)), where d is the number of divisors of n (A000005) and phi is Euler's totient function (A000010).

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 4, 3, 4, 2, 2, 2, 2, 4, 1, 2, 6, 2, 2, 4, 2, 2, 8, 1, 4, 2, 6, 2, 8, 2, 2, 4, 4, 4, 3, 2, 2, 4, 8, 2, 4, 2, 2, 6, 2, 2, 2, 3, 2, 4, 6, 2, 2, 4, 8, 4, 4, 2, 4, 2, 2, 6, 1, 4, 4, 2, 2, 4, 8, 2, 12, 2, 4, 2, 6, 4, 8, 2, 2, 1, 4, 2, 12, 4, 2, 4, 8, 2, 12, 4, 2, 4, 2, 4, 4, 2, 6, 6, 1, 2, 8, 2, 8, 8
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Showing 1-3 of 3 results.