cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A009191 a(n) = gcd(n, d(n)), where d(n) is the number of divisors of n (A000005).

Original entry on oeis.org

1, 2, 1, 1, 1, 2, 1, 4, 3, 2, 1, 6, 1, 2, 1, 1, 1, 6, 1, 2, 1, 2, 1, 8, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 9, 1, 2, 1, 8, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 8, 1, 2, 1, 12, 1, 2, 3, 1, 1, 2, 1, 2, 1, 2, 1, 12, 1, 2, 3, 2, 1, 2, 1, 10, 1, 2, 1, 12, 1, 2, 1, 8, 1, 6, 1, 2, 1, 2, 1, 12, 1, 2, 3, 1, 1, 2, 1, 8, 1
Offset: 1

Views

Author

Keywords

Comments

a(A046642(n)) = 1.
First occurrence of k: 1, 2, 9, 8, 400, 12, 3136, 24, 36, 80, 123904, 60, 692224, 448, 2025, 384, .... Conjecture: each k is present. - Robert G. Wilson v, Mar 27 2013
Conjecture is true. See David A. Corneth's comment in A324553. - Antti Karttunen, Mar 06 2019

Crossrefs

Cf. A046642 (positions of ones), A324553 (position of the first occurrence of each n).

Programs

Formula

a(n) = gcd(n, A000005(n)) = gcd(n, A049820(n)). - Antti Karttunen, Sep 25 2018

A318459 a(n) = gcd(n, tau(n), phi(n)), where tau = A000005 and phi = A000010.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 4, 3, 2, 1, 2, 1, 2, 1, 1, 1, 6, 1, 2, 1, 2, 1, 8, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 8, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 3, 1, 1, 2, 1, 2, 1, 2, 1, 12, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 12, 1, 2, 1, 8, 1, 6, 1, 2, 1, 2, 1, 4, 1, 2, 3, 1, 1, 2, 1, 8, 1
Offset: 1

Views

Author

Antti Karttunen, Sep 07 2018, after Labos Elemer's A074389

Keywords

Crossrefs

Programs

  • Mathematica
    Table[GCD[n,DivisorSigma[0,n],EulerPhi[n]],{n,110}] (* Harvey P. Dale, Jul 30 2019 *)
  • PARI
    A318459(n) = gcd([n, numdiv(n), eulerphi(n)]);

Formula

a(n) = gcd(n, A000005(n), A000010(n)).
a(n) = gcd(n,A009213(n)) = gcd(A000005(n),A009195(n)) = gcd(A000010(n),A009191(n)).
Showing 1-2 of 2 results.