cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A065300 Numbers k such that the sum of divisors of k is a squarefree number.

Original entry on oeis.org

1, 2, 4, 5, 8, 9, 13, 16, 18, 20, 25, 26, 29, 36, 37, 41, 45, 49, 50, 61, 64, 72, 73, 74, 80, 100, 101, 104, 109, 113, 116, 117, 121, 122, 128, 137, 144, 146, 148, 157, 169, 173, 180, 181, 193, 196, 200, 208, 218, 225, 229, 234, 242, 244, 256, 257, 261, 277, 281
Offset: 1

Views

Author

Labos Elemer, Oct 29 2001

Keywords

Comments

Numbers k such that sigma(k) divides primorial(k), that is, A002110(k) mod A000203(k) = 0. - Gary Detlefs, May 02 2012

Examples

			For k = 100, sigma(100) = 217 = 7*31.
		

Crossrefs

Cf. A000203 (sigma), A002110, A005117, A008683 (mu), A065299.

Programs

  • Mathematica
    Select[Range@ 300, SquareFreeQ@ DivisorSigma[1, #] &] (* or *)
    Select[Range@ 300, Abs@ MoebiusMu@ DivisorSigma[1, #] == 1 &] (* Michael De Vlieger, Mar 18 2017 *)
  • PARI
    { n=0; for (m = 1, 10^9, if (abs(moebius(sigma(m)))==1, write("b065300.txt", n++, " ", m); if (n==1000, return)) ) } \\ Harry J. Smith, Oct 15 2009
    
  • PARI
    for(n=1, 300, if(issquarefree(sigma(n)), print1(n,", "))) \\ Indranil Ghosh, Mar 19 2017
    
  • Python
    from sympy import mobius, divisor_sigma
    from sympy.ntheory.factor_ import core
    [n for n in range(1,301) if abs(mobius(divisor_sigma(n, 1))) == 1] #* or *#
    [n for n in range(1,301) if core(divisor_sigma(n,1)) == divisor_sigma(n,1)] # Indranil Ghosh, Mar 19 2017

Formula

Solutions to |mu(sigma(x))| = 1.

A065303 Neither n nor sigma(n) is squarefree.

Original entry on oeis.org

12, 24, 27, 28, 32, 40, 44, 48, 52, 54, 56, 60, 63, 68, 75, 76, 81, 84, 88, 90, 92, 96, 98, 99, 108, 112, 120, 124, 125, 126, 132, 135, 136, 140, 147, 150, 152, 153, 156, 160, 162, 164, 168, 171, 172, 175, 176, 184, 188, 189, 192, 198, 204, 207, 212, 216, 220
Offset: 1

Views

Author

Labos Elemer, Oct 29 2001

Keywords

Examples

			n = 147 = 3*7*7, sigma(147) = 2*2*3*19 = 228.
		

Crossrefs

Programs

  • Mathematica
    Select[Range@ 220, Nor[SquareFreeQ@ #, SquareFreeQ@ DivisorSigma[1, #]] &] (* Michael De Vlieger, Mar 18 2017 *)
    Select[Range[250],NoneTrue[{#,DivisorSigma[1,#]},SquareFreeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 22 2019 *)
  • PARI
    n=0; for (m = 1, 10^9, if (!moebius(m) && !moebius(sigma(m)), write("b065303.txt", n++, " ", m); if (n==1000, return)) ) \\ Harry J. Smith, Oct 16 2009
    
  • PARI
    sigmaSquarefree(f)=my(v=vector(#f~,i, (f[i,1]^(f[i,2]+1)-1) / (f[i,1]-1))); for(i=2,#v, for(j=1,i-1, if(gcd(v[i],v[j])>1, return(0)))); for(i=1,#v, if(!issquarefree(v[i]), return(0))); 1
    list(lim)=my(v=List()); forfactored(k=12,lim\1, if(!issquarefree(k) && !sigmaSquarefree(k[2]), listput(v,k[1]))); Vec(v) \\ Charles R Greathouse IV, Jan 08 2018
    
  • Python
    from sympy import divisor_sigma
    from sympy.ntheory.factor_ import core
    def is_squarefree(n): return core(n) == n
    print([i for i in range(1, 251) if not is_squarefree(i) and not is_squarefree(divisor_sigma(i,1))]) # Indranil Ghosh, Mar 18 2017

A065301 Numbers k such that both k and the sum of its divisors are squarefree numbers.

Original entry on oeis.org

1, 2, 5, 13, 26, 29, 37, 41, 61, 73, 74, 101, 109, 113, 122, 137, 146, 157, 173, 181, 193, 218, 229, 257, 277, 281, 313, 314, 317, 353, 362, 373, 386, 389, 397, 401, 409, 421, 433, 457, 458, 461, 509, 541, 554, 569, 601, 613, 617, 626, 641, 653, 661, 673, 677
Offset: 1

Views

Author

Labos Elemer, Oct 29 2001

Keywords

Comments

From Amiram Eldar, Mar 08 2025: (Start)
Number k such that A280710(k) * A280710(A000203(k)) = 1, or equivalently, A280710(k) * A280710(A048250(k)) = 1.
Squarefree numbers k whose prime factors are terms of A049097, and the elements of the set {p+1 , p|k} are pairwise coprime. (End)

Examples

			For k = 13, sigma(13) = 14 = 2*7 is squarefree.
For k = 26, sigma(26) = 1 + 2 + 13 + 26 = 42 = 2*3*7 is squarefree.
For k = 277 (prime), sigma(277) = 278 = 2*139 is squarefree.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000],AllTrue[{#,DivisorSigma[1,#]},SquareFreeQ]&] (* Harvey P. Dale, Aug 09 2014 *)
  • PARI
    is(m) = abs(moebius(m))==1 && abs(moebius(sigma(m)))==1 \\ Harry J. Smith, Oct 15 2009
    
  • Python
    from sympy import divisor_sigma
    from sympy.ntheory.factor_ import core
    def issquarefree(n): return core(n)==n
    print([n for n in range(1, 1001) if issquarefree(n) and issquarefree(divisor_sigma(n,1))]) # Indranil Ghosh, Mar 19 2017

A065302 Squarefree nonprime numbers whose sum of divisors is also squarefree.

Original entry on oeis.org

1, 26, 74, 122, 146, 218, 314, 362, 386, 458, 554, 626, 746, 794, 818, 842, 866, 914, 1082, 1202, 1226, 1322, 1346, 1418, 1466, 1514, 1538, 1658, 1706, 1754, 1874, 1994, 2018, 2042, 2066, 2138, 2186, 2234, 2258, 2306, 2402, 2426, 2474, 2594, 2642, 2762
Offset: 1

Views

Author

Labos Elemer, Oct 29 2001

Keywords

Comments

All elements except the first, a(1)=1, are of the form 2*p, where p is a prime and p == 1 (mod 12). Also, sigma(2*p) = (1+2)*(1+p) = 6m where m = (1+p)/2 and m == 1 (mod 6). A squarefree composite number not of the form 2*p cannot be in the sequence since sigma is multiplicative. For example, sigma(p*q) = (1+p)*(1+q) is divisible by 4 for p,q > 2. - Walter Kehowski, Mar 21 2007

Crossrefs

Programs

  • Mathematica
    Select[Range[3000], !PrimeQ[#] && SquareFreeQ[#] && SquareFreeQ[DivisorSigma[1, #]] &] (* Amiram Eldar, Jun 05 2025 *)
  • PARI
    isok(m) = !isprime(m) && moebius(m) && moebius(sigma(m)); \\ Harry J. Smith, Oct 16 2009

Extensions

Name corrected by Amiram Eldar, Jun 05 2025
Showing 1-4 of 4 results.