cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A065301 Numbers k such that both k and the sum of its divisors are squarefree numbers.

Original entry on oeis.org

1, 2, 5, 13, 26, 29, 37, 41, 61, 73, 74, 101, 109, 113, 122, 137, 146, 157, 173, 181, 193, 218, 229, 257, 277, 281, 313, 314, 317, 353, 362, 373, 386, 389, 397, 401, 409, 421, 433, 457, 458, 461, 509, 541, 554, 569, 601, 613, 617, 626, 641, 653, 661, 673, 677
Offset: 1

Views

Author

Labos Elemer, Oct 29 2001

Keywords

Comments

From Amiram Eldar, Mar 08 2025: (Start)
Number k such that A280710(k) * A280710(A000203(k)) = 1, or equivalently, A280710(k) * A280710(A048250(k)) = 1.
Squarefree numbers k whose prime factors are terms of A049097, and the elements of the set {p+1 , p|k} are pairwise coprime. (End)

Examples

			For k = 13, sigma(13) = 14 = 2*7 is squarefree.
For k = 26, sigma(26) = 1 + 2 + 13 + 26 = 42 = 2*3*7 is squarefree.
For k = 277 (prime), sigma(277) = 278 = 2*139 is squarefree.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000],AllTrue[{#,DivisorSigma[1,#]},SquareFreeQ]&] (* Harvey P. Dale, Aug 09 2014 *)
  • PARI
    is(m) = abs(moebius(m))==1 && abs(moebius(sigma(m)))==1 \\ Harry J. Smith, Oct 15 2009
    
  • Python
    from sympy import divisor_sigma
    from sympy.ntheory.factor_ import core
    def issquarefree(n): return core(n)==n
    print([n for n in range(1, 1001) if issquarefree(n) and issquarefree(divisor_sigma(n,1))]) # Indranil Ghosh, Mar 19 2017

A087249 Squarefree numbers k such that sigma(k) is not squarefree.

Original entry on oeis.org

3, 6, 7, 10, 11, 14, 15, 17, 19, 21, 22, 23, 30, 31, 33, 34, 35, 38, 39, 42, 43, 46, 47, 51, 53, 55, 57, 58, 59, 62, 65, 66, 67, 69, 70, 71, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 102, 103, 105, 106, 107, 110, 111, 114, 115, 118, 119, 123, 127, 129, 130
Offset: 1

Views

Author

Labos Elemer, Sep 05 2003

Keywords

Examples

			For k=7: sigma(7) = 2*2*2 = 8.
For k=10: sigma(10) = 1 + 2 + 5 + 10 = 18 = 2*3*3.
		

Crossrefs

Complement of A065301 within A005117.

Programs

  • Mathematica
    Select[Range[150],SquareFreeQ[#]&&!SquareFreeQ[DivisorSigma[1,#]]&]  (* Harvey P. Dale, Feb 06 2011 *)
  • PARI
    is(k) = issquarefree(k) && !issquarefree(sigma(k)); \\ Amiram Eldar, Jun 15 2024

A065302 Squarefree nonprime numbers whose sum of divisors is also squarefree.

Original entry on oeis.org

1, 26, 74, 122, 146, 218, 314, 362, 386, 458, 554, 626, 746, 794, 818, 842, 866, 914, 1082, 1202, 1226, 1322, 1346, 1418, 1466, 1514, 1538, 1658, 1706, 1754, 1874, 1994, 2018, 2042, 2066, 2138, 2186, 2234, 2258, 2306, 2402, 2426, 2474, 2594, 2642, 2762
Offset: 1

Views

Author

Labos Elemer, Oct 29 2001

Keywords

Comments

All elements except the first, a(1)=1, are of the form 2*p, where p is a prime and p == 1 (mod 12). Also, sigma(2*p) = (1+2)*(1+p) = 6m where m = (1+p)/2 and m == 1 (mod 6). A squarefree composite number not of the form 2*p cannot be in the sequence since sigma is multiplicative. For example, sigma(p*q) = (1+p)*(1+q) is divisible by 4 for p,q > 2. - Walter Kehowski, Mar 21 2007

Crossrefs

Programs

  • Mathematica
    Select[Range[3000], !PrimeQ[#] && SquareFreeQ[#] && SquareFreeQ[DivisorSigma[1, #]] &] (* Amiram Eldar, Jun 05 2025 *)
  • PARI
    isok(m) = !isprime(m) && moebius(m) && moebius(sigma(m)); \\ Harry J. Smith, Oct 16 2009

Extensions

Name corrected by Amiram Eldar, Jun 05 2025

A086368 Nonsquarefree numbers k such that sigma(k) is squarefree.

Original entry on oeis.org

4, 8, 9, 16, 18, 20, 25, 36, 45, 49, 50, 64, 72, 80, 100, 104, 116, 117, 121, 128, 144, 148, 169, 180, 196, 200, 208, 225, 234, 242, 244, 256, 261, 289, 292, 296, 320, 325, 333, 361, 369, 404, 436, 441, 450, 452, 464, 488, 512, 529, 548, 549, 576, 578, 584, 592
Offset: 1

Views

Author

Labos Elemer, Sep 05 2003

Keywords

Examples

			k = 45 = 3*3*5 and sigma(45) = 78 = 2*3*13.
		

Crossrefs

Intersection of A013929 and A065300.

Programs

  • Maple
    filter:= n -> not numtheory:-issqrfree(n) and numtheory:-issqrfree(numtheory:-sigma(n)):
    select(filter, [$1..1000]); # Robert Israel, May 11 2018
  • Mathematica
    q[k_] := ! SquareFreeQ[k] && SquareFreeQ[DivisorSigma[1, k]]; Select[Range[600], q] (* Amiram Eldar, Feb 24 2025 *)
  • PARI
    isok(k) = !issquarefree(k) && issquarefree(sigma(k)); \\ Amiram Eldar, Feb 24 2025

A283800 Numbers such that the sum of trits of its balanced ternary representation is 1 or -1.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25, 27, 29, 33, 35, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 69, 71, 73, 75, 77, 79, 81, 83, 87, 89, 95, 97, 99, 101, 105, 107, 113, 127, 129, 133, 135, 137, 139, 141, 143, 145, 147, 151, 153, 155, 157, 159, 161
Offset: 1

Views

Author

Lei Zhou, Mar 16 2017

Keywords

Examples

			3 = 10 in balanced ternary (bt) notation, 1+0 = 1, so 3 is in the list;
...
11 = 11T in bt notation, 1+1+T = 1, here T represent -1, so 11 is in the list;
13 = 111 in bt notation, 1+1+1 = 3, so 13 is NOT in the list.
		

Crossrefs

Programs

  • Mathematica
    BTDigits[m_Integer,
       g_] :=(*This is to determine digits of a number in balanced \
    ternary notation.*)
      Module[{n = m, d, sign, t = g},
       If[n != 0, If[n > 0, sign = 1, sign = -1; n = -n];
        d = Ceiling[Log[3, n]]; If[3^d - n <= ((3^d - 1)/2), d++];
        While[Length[t] < d, PrependTo[t, 0]];
        t[[Length[t] + 1 - d]] = sign;
        t = BTDigits[sign*(n - 3^(d - 1)), t]]; t];
    n = 0; Table[While[n++; g = {}; bt = BTDigits[n, g]; s = Total[bt];
      Abs[s] != 1]; n, {i, 1, 61}]
Showing 1-5 of 5 results.