A357917 a(n) is the least k such that phi(k) + d(k) = A357916(n), where phi(k) = A000010(k) is Euler's totient function, and d(k) = A000005(k) is the number of divisors of k.
1, 2, 4, 16, 25, 81, 121, 256, 484, 1296, 529, 1024, 1600, 2116, 2401, 7744, 11664, 5041, 7225, 11236, 20164, 10201, 25600, 12769, 30976, 46656, 21025, 17161, 44944, 51076, 29929, 84100, 73984, 36481, 75076, 107584, 54289, 63001, 87025, 69169, 101761, 126025, 215296, 256036, 252004, 295936
Offset: 1
Keywords
Examples
a(4) = 16 because phi(16) + d(16) = 8 + 5 = 13 = A357916(4), and no smaller number than 16 works.
Links
- Robert Israel, Table of n, a(n) for n = 1..3000
Programs
-
Maple
N:= 10^6: pmax:= evalf(N/(exp(gamma)*log(log(N))+3/log(log(N)))); V:= 'V': P:= {3}: V[3]:= 2: for k from 1 to sqrt(N) do n:= k^2; v:= numtheory:-phi(n)+numtheory:-tau(n); if v <= pmax and isprime(v) and not member(v,P) then P:= P union {v}; V[v]:= n; fi od: P:= sort(convert(P,list)): seq(V[p], p=P);
Comments