A055028 Number of Gaussian primes of norm n.
0, 0, 4, 0, 0, 8, 0, 0, 0, 4, 0, 0, 0, 8, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0
Offset: 0
Examples
There are 8 Gaussian primes of norm 5, +-1 +- 2i and +-2 +- i, but only two inequivalent ones (2 +- i).
References
- R. K. Guy, Unsolved Problems in Number Theory, A16.
- L. W. Reid, The Elements of the Theory of Algebraic Numbers, MacMillan, NY, 1910, see Chap. V.
Links
Programs
-
Maple
A055028 := proc(n::integer) local c,a,b ; c := 0 ; for a from -n to n do if issqr(n-a^2) then b := sqrt(n-a^2) ; if GaussInt[GIprime](a+b*I) and a^2+b^2=n then if b = 0 then c := c+1 ; # a+i*b and a-i*b else c := c+2 ; # a+i*b and a-i*b end if; end if; end if; end do: c ; end proc: seq( A055028(n),n=0..50) ; # R. J. Mathar, Jul 22 2021
-
Mathematica
a[n_ /; PrimeQ[n] && Mod[n, 4] == 1] = 8; a[2] = 4; a[n_ /; (p = Sqrt[n]; PrimeQ[p] && Mod[p, 4] == 3)] = 4; a[] = 0; Table[ a[n], {n, 0, 100}] (* _Jean-François Alcover, Jul 30 2013, after Franklin T. Adams-Watters *)
Formula
a(n) = 4 * A055029(n). - Franklin T. Adams-Watters, May 05 2006
Extensions
More terms from Reiner Martin, Jul 20 2001
Comments