A055030 (Sum(m^(p-1),m=1..p-1)+1)/p as p runs through the primes.
1, 2, 71, 9596, 1355849266, 1032458258547, 1653031004194447737, 3167496749732497119310, 22841077183004879532481321652, 1768861419039838982256898243427529138091, 10293527624511391856267274608237685758691696
Offset: 1
Keywords
References
- R. K. Guy, Unsolved Problems in Number Theory, A17.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..76
- K. MacMillan and J. Sondow, Proofs of power sum and binomial coefficient congruences via Pascal's identity, Amer. Math. Monthly, 118 (2011), 549-551.
Programs
-
Maple
A055030 := proc(n) p := ithprime(n) ; add(m^(p-1),m=1..p-1) ; (1+%)/p ; end proc: seq(A055030(n),n=1..5) ; # R. J. Mathar, Jan 09 2017
-
Mathematica
Array[(Sum[m^(# - 1), {m, # - 1}] + 1)/# &@ Prime@ # &, 11] (* Michael De Vlieger, Nov 04 2017 *)
-
PARI
for(n=1,20,print1((1+sum(i=1, prime(n)-1,i^(prime(n)-1)))/prime(n), ",")) /* Benoit Cloitre, Jun 09 2002*/
Formula
Extensions
Comments corrected by Jonathan Sondow, Jan 11 2012
Comments