A055032 Denominator of (Sum(m^(n-1),m=1..n-1)+1)/n.
1, 1, 1, 4, 1, 3, 1, 8, 9, 5, 1, 12, 1, 7, 15, 16, 1, 9, 1, 20, 7, 11, 1, 24, 25, 13, 27, 28, 1, 15, 1, 32, 33, 17, 35, 36, 1, 19, 13, 40, 1, 21, 1, 44, 45, 23, 1, 48, 49, 25, 51, 52, 1, 27, 55, 56, 19, 29, 1, 60, 1, 31, 63, 64, 65, 33, 1, 68, 69, 35, 1, 72, 1
Offset: 1
References
- R. K. Guy, Unsolved Problems in Number Theory, A17.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
a:= proc(n) local S,m; S:= 1; for m from 1 to n-1 do S:= S + m &^(n-1) mod n; od: denom(S/n); end proc; seq(a(n),n=1..1000); # Robert Israel, May 30 2014
-
Mathematica
Table[Denominator[(Sum[m^(n - 1), {m, 1, n - 1}] + 1)/n], {n, 1, 10}] (* G. C. Greubel, Jun 06 2016 *)
-
PARI
a(n) = denominator((sum(m=1, n - 1, m^(n - 1)) + 1)/n); \\ Indranil Ghosh, May 17 2017
-
Python
from sympy import Integer def a(n): return ((sum(m**(n - 1) for m in range(1, n)) + 1)/Integer(n)).denominator # Indranil Ghosh, May 17 2017
Comments