cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055032 Denominator of (Sum(m^(n-1),m=1..n-1)+1)/n.

Original entry on oeis.org

1, 1, 1, 4, 1, 3, 1, 8, 9, 5, 1, 12, 1, 7, 15, 16, 1, 9, 1, 20, 7, 11, 1, 24, 25, 13, 27, 28, 1, 15, 1, 32, 33, 17, 35, 36, 1, 19, 13, 40, 1, 21, 1, 44, 45, 23, 1, 48, 49, 25, 51, 52, 1, 27, 55, 56, 19, 29, 1, 60, 1, 31, 63, 64, 65, 33, 1, 68, 69, 35, 1, 72, 1
Offset: 1

Views

Author

N. J. A. Sloane, Jun 11 2000

Keywords

Comments

It is conjectured that this is 1 iff n is 1 or a prime.

References

  • R. K. Guy, Unsolved Problems in Number Theory, A17.

Crossrefs

Programs

  • Maple
    a:= proc(n) local S,m;
        S:= 1;
        for m from 1 to n-1 do
          S:= S + m &^(n-1) mod n;
        od:
        denom(S/n);
    end proc;
    seq(a(n),n=1..1000); # Robert Israel, May 30 2014
  • Mathematica
    Table[Denominator[(Sum[m^(n - 1), {m, 1, n - 1}] + 1)/n], {n, 1, 10}] (* G. C. Greubel, Jun 06 2016 *)
  • PARI
    a(n) = denominator((sum(m=1, n - 1, m^(n - 1)) + 1)/n); \\ Indranil Ghosh, May 17 2017
    
  • Python
    from sympy import Integer
    def a(n): return ((sum(m**(n - 1) for m in range(1, n)) + 1)/Integer(n)).denominator # Indranil Ghosh, May 17 2017