A055035 Degree of minimal polynomial of sin(Pi/n) over the rationals.
1, 1, 2, 2, 4, 1, 6, 4, 6, 2, 10, 4, 12, 3, 8, 8, 16, 3, 18, 8, 12, 5, 22, 8, 20, 6, 18, 12, 28, 4, 30, 16, 20, 8, 24, 12, 36, 9, 24, 16, 40, 6, 42, 20, 24, 11, 46, 16, 42, 10, 32, 24, 52, 9, 40, 24, 36, 14, 58, 16, 60, 15, 36, 32, 48, 10, 66, 32, 44, 12, 70, 24, 72
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..175
- Sameen Ahmed Khan, Trigonometric Ratios Using Algebraic Methods, Mathematics and Statistics (2021) Vol. 9, No. 6, 899-907.
- Eric Weisstein's World of Mathematics, Trigonometry Angles
Programs
-
Mathematica
a[n_] := If[n==2, 1, EulerPhi[n]/{1, 1, 2, 1}[[Mod[n, 4]+1]]]; Table[a[n], {n, 80}] a[n_] := Exponent[ MinimalPolynomial[Sin[Pi/n]][x], x]; Array[a, 75] (* Robert G. Wilson v, Jul 28 2014 *)
Formula
a(1)=1, a(2)=1, a(n)=phi(n)/(1, 1, 2, 1 for n=0, 1, 2, 3 mod 4) for n>2, where phi is Euler's totient, A000010
a(n) = A093819(2*n), n >= 1.- Wolfdieter Lang, Oct 29 2019
Comments