A055044 Numbers of the form 2^(2i+1)*(8*j+1).
2, 8, 18, 32, 34, 50, 66, 72, 82, 98, 114, 128, 130, 136, 146, 162, 178, 194, 200, 210, 226, 242, 258, 264, 274, 288, 290, 306, 322, 328, 338, 354, 370, 386, 392, 402, 418, 434, 450, 456, 466, 482, 498, 512, 514, 520, 530, 544, 546, 562, 578
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- L. J. Mordell, A new Waring's problem with squares of linear forms, Quart. J. Math., 1 (1930), 276-288 (see p. 283).
Crossrefs
Cf. A234000.
Programs
-
Mathematica
With[{max = 600}, Flatten[Table[2^(2*i + 1)*(8*j + 1), {i, 0, (Log2[max] - 1)/2}, {j, 0, Floor[(max/2^(2*i + 1) - 1)/8]}]] // Sort] (* Amiram Eldar, Mar 29 2025 *)
-
Python
def A055044(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return n+x-sum(((x>>(i<<1)+1)-1>>3)+1 for i in range(x.bit_length()+1>>1)) return bisection(f,n,n) # Chai Wah Wu, Mar 19 2025
Formula
a(n) = 2*A234000(n). - Chai Wah Wu, Mar 19 2025
Comments