A055052 Numbers of the form 4^i*(8j+7) or 4^i*(8j+5).
5, 7, 13, 15, 20, 21, 23, 28, 29, 31, 37, 39, 45, 47, 52, 53, 55, 60, 61, 63, 69, 71, 77, 79, 80, 84, 85, 87, 92, 93, 95, 101, 103, 109, 111, 112, 116, 117, 119, 124, 125, 127, 133, 135, 141, 143, 148, 149, 151, 156, 157, 159, 165, 167, 173, 175
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- L. J. Mordell, A new Waring's problem with squares of linear forms, Quart. J. Math., 1 (1930), 276-288 (see p. 283).
Programs
-
Mathematica
Select[Range[200], MemberQ[{5, 7}, Mod[# / 4^IntegerExponent[#, 4], 8]] &] (* Amiram Eldar, Feb 09 2024 *)
-
Python
def A055052(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): c = n+x for i in range(x.bit_length()>>1): m = x>>(i<<1) c -= (m-5>>3)+(m-7>>3)+2 return c return bisection(f,n,n) # Chai Wah Wu, Feb 14 2025
Comments