A055088 Triangle of generalized Legendre symbols L(a/b) read by rows, with 1's for quadratic residues and 0's for quadratic non-residues.
1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0
Offset: 1
Examples
The tenth row gives the quadratic residues and non-residues of 11 (see A011582) and the twelfth row gives the same information for 13 (A011583), with -1's replaced by zeros. . Triangle starts: [ 1] [1] [ 2] [1, 0] [ 3] [1, 0, 0] [ 4] [1, 0, 0, 1] [ 5] [1, 0, 1, 1, 0] [ 6] [1, 1, 0, 1, 0, 0] [ 7] [1, 0, 0, 1, 0, 0, 0] [ 8] [1, 0, 0, 1, 0, 0, 1, 0] [ 9] [1, 0, 0, 1, 1, 1, 0, 0, 1] [10] [1, 0, 1, 1, 1, 0, 0, 0, 1, 0] [11] [1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0] [12] [1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1]
Programs
-
Maple
# See A054431 for one_or_zero and trinv. with(numtheory,quadres); quadres_0_1_array := (n) -> one_or_zero(quadres((n-((trinv(n-1)*(trinv(n-1)-1))/2)), (trinv(n-1)+1)));
-
Mathematica
row[n_] := With[{rr = Table[Mod[k^2, n + 1], {k, 1, n}] // Union}, Boole[ MemberQ[rr, #]]& /@ Range[n]]; Array[row, 14] // Flatten (* Jean-François Alcover, Mar 05 2016 *)
-
Sage
def A055088_row(n) : Q = quadratic_residues(n+1) return [int(i in Q) for i in (1..n)] for n in (1..14) : print(A055088_row(n)) # Peter Luschny, Aug 08 2012
Comments