cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055088 Triangle of generalized Legendre symbols L(a/b) read by rows, with 1's for quadratic residues and 0's for quadratic non-residues.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0
Offset: 1

Views

Author

Antti Karttunen, Apr 18 2000

Keywords

Comments

L(a/b) is 1 if an integer c exists such that c^2 is congruent to a (mod b) and 0 otherwise.
For every prime of the form 4k+1 (A002144) the row is symmetric and for every prime of the form 4k+3 (A002145) the row is "complementarily symmetric".

Examples

			The tenth row gives the quadratic residues and non-residues of 11 (see A011582) and the twelfth row gives the same information for 13 (A011583), with -1's replaced by zeros.
.
Triangle starts:
  [ 1] [1]
  [ 2] [1, 0]
  [ 3] [1, 0, 0]
  [ 4] [1, 0, 0, 1]
  [ 5] [1, 0, 1, 1, 0]
  [ 6] [1, 1, 0, 1, 0, 0]
  [ 7] [1, 0, 0, 1, 0, 0, 0]
  [ 8] [1, 0, 0, 1, 0, 0, 1, 0]
  [ 9] [1, 0, 0, 1, 1, 1, 0, 0, 1]
  [10] [1, 0, 1, 1, 1, 0, 0, 0, 1, 0]
  [11] [1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0]
  [12] [1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1]
		

Crossrefs

Each row interpreted as a binary number: A055094.

Programs

  • Maple
    # See A054431 for one_or_zero and trinv.
    with(numtheory,quadres); quadres_0_1_array := (n) -> one_or_zero(quadres((n-((trinv(n-1)*(trinv(n-1)-1))/2)), (trinv(n-1)+1)));
  • Mathematica
    row[n_] := With[{rr = Table[Mod[k^2, n + 1], {k, 1, n}] // Union}, Boole[ MemberQ[rr, #]]& /@ Range[n]];
    Array[row, 14] // Flatten (* Jean-François Alcover, Mar 05 2016 *)
  • Sage
    def A055088_row(n) :
        Q = quadratic_residues(n+1)
        return [int(i in Q) for i in (1..n)]
    for n in (1..14) : print(A055088_row(n))  # Peter Luschny, Aug 08 2012