cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055246 At step number k >= 1 the 2^(k-1) open intervals that are erased from [0,1] in the Cantor middle-third set construction are I(k,n) = (a(n)/3^k, (1+a(n))/3^k), n=1..2^(k-1).

Original entry on oeis.org

1, 7, 19, 25, 55, 61, 73, 79, 163, 169, 181, 187, 217, 223, 235, 241, 487, 493, 505, 511, 541, 547, 559, 565, 649, 655, 667, 673, 703, 709, 721, 727, 1459, 1465, 1477, 1483, 1513, 1519, 1531, 1537, 1621, 1627, 1639, 1645, 1675, 1681, 1693, 1699
Offset: 1

Views

Author

Wolfdieter Lang, May 23 2000

Keywords

Comments

Related to A005836. Gives boundaries of open intervals that have to be erased in the Cantor middle-third set construction.
Let g(n) = Sum_{i=0..n} (i*binomial(n+i,i)^3*binomial(n,i)^2) = A112035(n). Let b = {m>0 : g(m) != 0 (mod 3)}. Then b(n) = a(n). - Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 08 2004
Conjecture: Similarly to A191107, this increasing sequence is generated by the rules: a(1) = 1, and if x is in the sequence, then 3*x-2 and 3*x+4 are also in the sequence. - L. Edson Jeffery, Nov 17 2015

Examples

			k=1: (1/3, 2/3);
k=2: (1/9, 2/9), (7/9, 8/9);
k=3: (1/27, 2/27), (7/27, 8/27), (19/27, 20/27), (25/27, 26/27); ...
		

Crossrefs

Programs

  • Mathematica
    (* (Conjectured) Choose rows large enough to guarantee that all terms < max are generated. *)
    rows = 1000; max = 10^4; a[1] = {1}; i = 1; Do[a[n_] = {}; Do[If[1 < 3*a[n - 1][[k]] - 2 < max, AppendTo[a[n], 3*a[n - 1][[k]] - 2], Break]; If[3*a[n - 1][[k]] + 4 < max, AppendTo[a[n], 3*a[n - 1][[k]] + 4], Break], {k, Length[a[n - 1]]}]; If[a[n] == {}, Break, i++], {n, 2, 1000}]; a055246 = Take[Flatten[Table[a[n], {n, i}]], 48] (* L. Edson Jeffery, Nov 17 2015 *)
    Join[{1}, 1 + 6 Accumulate[Table[(3^IntegerExponent[n, 2] + 1)/2, {n, 60}]]] (* Vincenzo Librandi, Nov 26 2015 *)
  • PARI
    g(n)=sum(i=0,n,i*binomial(n+i,i)^3*binomial(n,i)^2);
    for (i=1,2000,if(Mod(g(i),3)<>0,print1(i,",")))
    
  • PARI
    a(n) = fromdigits(binary(n-1),3)*6 + 1; \\ Kevin Ryde, Apr 23 2021
    
  • Python
    def A055246(n): return int(bin(n-1)[2:],3)*6|1 # Chai Wah Wu, Jun 26 2025

Formula

a(n) = 1+6*A005836(n), n >= 1.
a(n) = 1+3*A005823(n), n >= 1.
a(n+1) = A074938(n) + A074939(n); A074938: odd numbers in A005836, A074939: even numbers in A005836. - Philippe Deléham, Jul 10 2005
Conjecture: a(n) = 2*A191107(n) - 1 = 6*A003278(n) - 5 = (a((2*n-1)*2^(k-1))+2)/3^k, k>0. - L. Edson Jeffery, Nov 25 2015

Extensions

Edited by N. J. A. Sloane, Nov 20 2015: used first comment to give more precise definition, and edited a comment at the suggestion of L. Edson Jeffery.