A055277 Triangle T(n,k) of number of rooted trees with n nodes and k leaves, 1 <= k <= n.
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 4, 3, 1, 0, 1, 6, 8, 4, 1, 0, 1, 9, 18, 14, 5, 1, 0, 1, 12, 35, 39, 21, 6, 1, 0, 1, 16, 62, 97, 72, 30, 7, 1, 0, 1, 20, 103, 212, 214, 120, 40, 8, 1, 0, 1, 25, 161, 429, 563, 416, 185, 52, 9, 1, 0, 1, 30, 241, 804, 1344, 1268, 732, 270, 65, 10, 1, 0
Offset: 1
Examples
From _Joerg Arndt_, Aug 18 2014: (Start) Triangle starts: 01: 1 02: 1 0 03: 1 1 0 04: 1 2 1 0 05: 1 4 3 1 0 06: 1 6 8 4 1 0 07: 1 9 18 14 5 1 0 08: 1 12 35 39 21 6 1 0 09: 1 16 62 97 72 30 7 1 0 10: 1 20 103 212 214 120 40 8 1 0 11: 1 25 161 429 563 416 185 52 9 1 0 12: 1 30 241 804 1344 1268 732 270 65 10 1 0 13: 1 36 348 1427 2958 3499 2544 1203 378 80 11 1 0 ... The trees with n=5 nodes, as (preorder-) level sequences, together with their number of leaves, and an ASCII rendering, are: : : 1: [ 0 1 2 3 4 ] 1 : O--o--o--o--o : : 2: [ 0 1 2 3 3 ] 2 : O--o--o--o : .--o : : 3: [ 0 1 2 3 2 ] 2 : O--o--o--o : .--o : : 4: [ 0 1 2 3 1 ] 2 : O--o--o--o : .--o : : 5: [ 0 1 2 2 2 ] 3 : O--o--o : .--o : .--o : : 6: [ 0 1 2 2 1 ] 3 : O--o--o : .--o : .--o : : 7: [ 0 1 2 1 2 ] 2 : O--o--o : .--o--o : : 8: [ 0 1 2 1 1 ] 3 : O--o--o : .--o : .--o : : 9: [ 0 1 1 1 1 ] 4 : O--o : .--o : .--o : .--o : This gives [1, 4, 3, 1, 0], row n=5 of the triangle. (End) G.f. = x*(y + x*y + x^2*(y + y^2) + x^3*(y + 2*y^2 + y^3) + x^4*(y + 4*y^2 + 3*x^3 + y^4) + ...).
References
- F. Harary, Recent results on graphical enumeration, pp. 29-36 of Graphs and Combinatorics (Washington, Jun 1973), Ed. by R. A. Bari and F. Harary. Lect. Notes Math., Vol. 406. Springer-Verlag, 1974.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275
- N. J. A. Sloane, Transforms
- Peter Steinbach, Field Guide to Simple Graphs, Volume 3, Part 10 (For Volumes 1, 2, 3, 4 of this book see A000088, A008406, A000055, A000664, respectively.)
- Index entries for sequences related to rooted trees
Crossrefs
Programs
-
Mathematica
rut[n_]:=rut[n]=If[n===1,{{}},Join@@Function[c,Union[Sort/@Tuples[rut/@c]]]/@IntegerPartitions[n-1]]; Table[Length[Select[rut[n],Count[#,{},{-2}]===k&]],{n,13},{k,n}] (* Gus Wiseman, Mar 19 2018 *)
-
PARI
{T(n, k) = my(A = O(x)); if(k<1 || k>n, 0, for(j=1, n, A = x*(y - 1 + exp( sum(i=1, j, 1/i * subst( subst( A + x * O(x^(j\i)), x, x^i), y, y^i) ) ))); polcoeff( polcoeff(A, n), k))}; /* Michael Somos, Aug 24 2015 */
Formula
G.f. satisfies A(x, y) = x*y + x*EULER(A(x, y)) - x. Shifts up under EULER transform.
G.f. satisfies A(x, y) = x*y - x + x * exp(Sum_{i>0} A(x^i, y^i) / i). [Harary, p. 34, equation (10)]. - Michael Somos, Nov 02 2014
Sum_k T(n, k) = A000081(n). - Michael Somos, Aug 24 2015
Comments