cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055277 Triangle T(n,k) of number of rooted trees with n nodes and k leaves, 1 <= k <= n.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 4, 3, 1, 0, 1, 6, 8, 4, 1, 0, 1, 9, 18, 14, 5, 1, 0, 1, 12, 35, 39, 21, 6, 1, 0, 1, 16, 62, 97, 72, 30, 7, 1, 0, 1, 20, 103, 212, 214, 120, 40, 8, 1, 0, 1, 25, 161, 429, 563, 416, 185, 52, 9, 1, 0, 1, 30, 241, 804, 1344, 1268, 732, 270, 65, 10, 1, 0
Offset: 1

Views

Author

Christian G. Bower, May 09 2000

Keywords

Comments

Harary denotes the g.f. as P(x, y) on page 33 "... , and let P(x,y) = Sum Sum P_{nm} x^ny^m where P_{nm} is the number of planted trees with n points and m endpoints, in which again the plant has not been counted either as a point or as an endpoint." - Michael Somos, Nov 02 2014

Examples

			From _Joerg Arndt_, Aug 18 2014: (Start)
Triangle starts:
01: 1
02: 1    0
03: 1    1    0
04: 1    2    1    0
05: 1    4    3    1    0
06: 1    6    8    4    1    0
07: 1    9   18   14    5    1    0
08: 1   12   35   39   21    6    1    0
09: 1   16   62   97   72   30    7    1    0
10: 1   20  103  212  214  120   40    8    1    0
11: 1   25  161  429  563  416  185   52    9    1    0
12: 1   30  241  804 1344 1268  732  270   65   10    1    0
13: 1   36  348 1427 2958 3499 2544 1203  378   80   11    1    0
...
The trees with n=5 nodes, as (preorder-) level sequences, together with their number of leaves, and an ASCII rendering, are:
:
:     1:  [ 0 1 2 3 4 ]   1
:  O--o--o--o--o
:
:     2:  [ 0 1 2 3 3 ]   2
:  O--o--o--o
:        .--o
:
:     3:  [ 0 1 2 3 2 ]   2
:  O--o--o--o
:     .--o
:
:     4:  [ 0 1 2 3 1 ]   2
:  O--o--o--o
:  .--o
:
:     5:  [ 0 1 2 2 2 ]   3
:  O--o--o
:     .--o
:     .--o
:
:     6:  [ 0 1 2 2 1 ]   3
:  O--o--o
:     .--o
:  .--o
:
:     7:  [ 0 1 2 1 2 ]   2
:  O--o--o
:  .--o--o
:
:     8:  [ 0 1 2 1 1 ]   3
:  O--o--o
:  .--o
:  .--o
:
:     9:  [ 0 1 1 1 1 ]   4
:  O--o
:  .--o
:  .--o
:  .--o
:
This gives [1, 4, 3, 1, 0], row n=5 of the triangle.
(End)
G.f. = x*(y + x*y + x^2*(y + y^2) + x^3*(y + 2*y^2 + y^3) + x^4*(y + 4*y^2 + 3*x^3 + y^4) + ...).
		

References

  • F. Harary, Recent results on graphical enumeration, pp. 29-36 of Graphs and Combinatorics (Washington, Jun 1973), Ed. by R. A. Bari and F. Harary. Lect. Notes Math., Vol. 406. Springer-Verlag, 1974.

Crossrefs

Programs

  • Mathematica
    rut[n_]:=rut[n]=If[n===1,{{}},Join@@Function[c,Union[Sort/@Tuples[rut/@c]]]/@IntegerPartitions[n-1]];
    Table[Length[Select[rut[n],Count[#,{},{-2}]===k&]],{n,13},{k,n}] (* Gus Wiseman, Mar 19 2018 *)
  • PARI
    {T(n, k) = my(A = O(x)); if(k<1 || k>n, 0, for(j=1, n, A = x*(y - 1  + exp( sum(i=1, j, 1/i * subst( subst( A + x * O(x^(j\i)), x, x^i), y, y^i) ) ))); polcoeff( polcoeff(A, n), k))}; /* Michael Somos, Aug 24 2015 */

Formula

G.f. satisfies A(x, y) = x*y + x*EULER(A(x, y)) - x. Shifts up under EULER transform.
G.f. satisfies A(x, y) = x*y - x + x * exp(Sum_{i>0} A(x^i, y^i) / i). [Harary, p. 34, equation (10)]. - Michael Somos, Nov 02 2014
Sum_k T(n, k) = A000081(n). - Michael Somos, Aug 24 2015