cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055278 Number of rooted trees with n nodes and 3 leaves.

Original entry on oeis.org

1, 3, 8, 18, 35, 62, 103, 161, 241, 348, 487, 664, 886, 1159, 1491, 1890, 2364, 2922, 3574, 4329, 5198, 6192, 7322, 8600, 10039, 11651, 13450, 15450, 17665, 20110, 22801, 25753, 28983, 32508, 36345, 40512, 45028, 49911, 55181, 60858, 66962, 73514, 80536
Offset: 4

Views

Author

Christian G. Bower, May 09 2000

Keywords

Examples

			G.f. = x^4 + 3*x^5 + 8*x^6 + 18*x^7 + 35*x^8 + 62*x^9 + 103*x^10 + ...
		

Crossrefs

Column 3 of A055277.
Cf. A055364.

Programs

  • Mathematica
    a[ n_] := Quotient[ 3 n^4 - 20 n^3 + 54 n^2 - 60 n + 32, 144];
  • PARI
    {a(n) = (3*n^4 - 20*n^3 + 54*n^2 - 60*n + 32) \ 144}; /* Michael Somos, Jun 29 2015 */
    
  • PARI
    {a(n) = if( n<0, n = -1-n; polcoeff( (1 + x + x^3) / ((1 - x)^3 * (1 - x^2) * (1 - x^3)) + x * O(x^n), n), polcoeff( x^4 * (1 + x^2 + x^3) / ((1 - x)^3 * (1 - x^2) * (1 - x^3)) + x * O(x^n), n))}; /* Michael Somos, Jun 29 2015 */

Formula

G.f.: x^4*(x^3+x^2+1)/((1-x^2)*(1-x^3)*(1-x)^3) (conjectured). - Ralf Stephan, Mar 07 2004
a(n) = A055364(4 - n) for all n in Z. - Michael Somos, Jun 29 2015