1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 4, 3, 1, 0, 1, 6, 8, 4, 1, 0, 1, 9, 18, 14, 5, 1, 0, 1, 12, 35, 39, 21, 6, 1, 0, 1, 16, 62, 97, 72, 30, 7, 1, 0, 1, 20, 103, 212, 214, 120, 40, 8, 1, 0, 1, 25, 161, 429, 563, 416, 185, 52, 9, 1, 0, 1, 30, 241, 804, 1344, 1268, 732, 270, 65, 10, 1, 0
Offset: 1
From _Joerg Arndt_, Aug 18 2014: (Start)
Triangle starts:
01: 1
02: 1 0
03: 1 1 0
04: 1 2 1 0
05: 1 4 3 1 0
06: 1 6 8 4 1 0
07: 1 9 18 14 5 1 0
08: 1 12 35 39 21 6 1 0
09: 1 16 62 97 72 30 7 1 0
10: 1 20 103 212 214 120 40 8 1 0
11: 1 25 161 429 563 416 185 52 9 1 0
12: 1 30 241 804 1344 1268 732 270 65 10 1 0
13: 1 36 348 1427 2958 3499 2544 1203 378 80 11 1 0
...
The trees with n=5 nodes, as (preorder-) level sequences, together with their number of leaves, and an ASCII rendering, are:
:
: 1: [ 0 1 2 3 4 ] 1
: O--o--o--o--o
:
: 2: [ 0 1 2 3 3 ] 2
: O--o--o--o
: .--o
:
: 3: [ 0 1 2 3 2 ] 2
: O--o--o--o
: .--o
:
: 4: [ 0 1 2 3 1 ] 2
: O--o--o--o
: .--o
:
: 5: [ 0 1 2 2 2 ] 3
: O--o--o
: .--o
: .--o
:
: 6: [ 0 1 2 2 1 ] 3
: O--o--o
: .--o
: .--o
:
: 7: [ 0 1 2 1 2 ] 2
: O--o--o
: .--o--o
:
: 8: [ 0 1 2 1 1 ] 3
: O--o--o
: .--o
: .--o
:
: 9: [ 0 1 1 1 1 ] 4
: O--o
: .--o
: .--o
: .--o
:
This gives [1, 4, 3, 1, 0], row n=5 of the triangle.
(End)
G.f. = x*(y + x*y + x^2*(y + y^2) + x^3*(y + 2*y^2 + y^3) + x^4*(y + 4*y^2 + 3*x^3 + y^4) + ...).
Comments