A055313 Number of labeled rooted trees with n nodes and 12 leaves.
13, 745290, 2153888100, 1850107896000, 813987254808000, 233983253596659840, 50146687652338368000, 8684014103185704192000, 1281139242561407305440000, 167044094432657294973120000
Offset: 13
Keywords
Links
Crossrefs
Column 12 of A055302.
Programs
-
Magma
[Factorial(n)*(n-12)^2*(n-11)^2*(n-10)*(n-9)*(n-8)*(n-7)*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(9*n^8 - 708*n^7 + 24018*n^6 - 458136*n^5 + 5363513*n^4 - 39369364*n^3 + 176423596*n^2 - 439700816*n + 464486400) / 352423730384732160000: n in [13..25]]; // Vincenzo Librandi, Jul 25 2014
-
Mathematica
Table[n! * (n-12)^2*(n-11)^2*(n-10)*(n-9)*(n-8)*(n-7)*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(9*n^8 - 708*n^7 + 24018*n^6 - 458136*n^5 + 5363513*n^4 - 39369364*n^3 + 176423596*n^2 - 439700816*n + 464486400) / 352423730384732160000,{n,13,25}] (* Vaclav Kotesovec, Jul 25 2014 *)
Formula
a(n) = n! * (n-12)^2*(n-11)^2*(n-10)*(n-9)*(n-8)*(n-7)*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(9*n^8 - 708*n^7 + 24018*n^6 - 458136*n^5 + 5363513*n^4 - 39369364*n^3 + 176423596*n^2 - 439700816*n + 464486400) / 352423730384732160000. - Vaclav Kotesovec, Jul 25 2014