cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055330 Number of rooted identity trees with n nodes and 5 leaves.

Original entry on oeis.org

3, 26, 116, 387, 1068, 2587, 5678, 11540, 22034, 39957, 69366, 116009, 187823, 295574, 453582, 680625, 1000952, 1445516, 2053343, 2873165, 3965216, 5403347, 7277330, 9695538, 12787847, 16708973, 21642067, 27802808, 35443793, 44859494, 56391551, 70434706
Offset: 10

Views

Author

Christian G. Bower, May 12 2000

Keywords

Crossrefs

Column 5 of A055327.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( x^10*(3 + 14*x+24*x^2+36*x^3+41*x^4+38*x^5+29*x^6+16*x^7+6*x^8+3*x^9)/((1-x)^3*(&*[1-x^j: j in [1..5]])) )); // G. C. Greubel, Nov 09 2023
    
  • Mathematica
    Drop[CoefficientList[Series[x^10*(3+14*x+24*x^2+36*x^3+41*x^4+38*x^5+29*x^6 +16*x^7+6*x^8+3*x^9)/((1-x)^3*Product[1-x^j, {j,5}]), {x,0,40}], x], 10] (* G. C. Greubel, Nov 09 2023 *)
  • SageMath
    def p(x): return 3 +14*x +24*x^2 +36*x^3 +41*x^4 +38*x^5 +29*x^6 +16*x^7 +6*x^8 +3*x^9
    def A055330_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x^10*p(x)/((1-x)^3*product(1-x^j for j in range(1,6))) ).list()
    a=A055330_list(50); a[10:] # G. C. Greubel, Nov 09 2023

Formula

G.f.: x^10*(3 +14*x +24*x^2 +36*x^3 +41*x^4 +38*x^5 +29*x^6 +16*x^7 +6*x^8 +3*x^9)/((1-x)^9*(1+x)^3*(1+x^2)*(1+x+x^2)*(1+x+x^2+x^3+x^4)). - Colin Barker, Nov 07 2012
a(n) = (1/(8*10!))*(5303207 -25330590*n +28099260*n^2 -18286800*n^3 +7777980*n^4 -1990044*n^5 +286440*n^6 -21240*n^7 +630*n^8) -(-1)^n*(89 - 34*n +4*n^2)/2048 -(3/64)*(-1)^binomial(n+1,2) -A061347(n+1)/81 +A257145(n+2)/25. - G. C. Greubel, Nov 09 2023