cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055335 Number of asymmetric (identity) trees with n nodes and 4 leaves.

Original entry on oeis.org

1, 3, 8, 14, 25, 40, 62, 89, 127, 173, 233, 304, 393, 497, 624, 769, 942, 1139, 1369, 1627, 1925, 2257, 2635, 3053, 3524, 4042, 4621, 5253, 5954, 6717, 7557, 8466, 9462, 10536, 11706, 12963, 14326, 15786, 17363, 19046, 20857, 22786, 24854
Offset: 9

Views

Author

Christian G. Bower, May 12 2000

Keywords

Crossrefs

Column 4 of A055334.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( x^9*(1+x+2*x^2-x^3)/((1-x)*(&*[1-x^j: j in [1..4]])) )); // G. C. Greubel, Nov 10 2023
    
  • Mathematica
    Drop[CoefficientList[Series[x^9*(1+x+2*x^2-x^3)/((1-x)*Product[1-x^j, {j,4}]), {x,0,50}], x], 9] (* G. C. Greubel, Nov 10 2023 *)
  • SageMath
    def A055335_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x^9*(1+x+2*x^2-x^3)/((1-x)*product(1-x^j for j in range(1,5))) ).list()
    a=A055335_list(50); a[9:] # G. C. Greubel, Nov 10 2023

Formula

G.f.: x^9*(1+x+2*x^2-x^3)/((1-x)^2*(1-x^2)^2*(1+x^2)*(1-x^3)).
a(n) = (-225 -762*n +516*n^2 -100*n^3 +6*n^4)/1152 -(3/128)*(-1)^n*(2*n -11) -(1/16)*(2 -(-1)^n)*(-1)^binomial(n,2) -(1/9)*ChebyshevU(n-1, -1/2) + [n=1]. - G. C. Greubel, Nov 10 2023