cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055340 Triangle read by rows: number of mobiles (circular rooted trees) with n nodes and k leaves.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 4, 3, 1, 0, 1, 6, 8, 4, 1, 0, 1, 9, 19, 16, 5, 1, 0, 1, 12, 37, 46, 25, 6, 1, 0, 1, 16, 66, 118, 96, 40, 7, 1, 0, 1, 20, 110, 260, 300, 184, 56, 8, 1, 0, 1, 25, 172, 527, 811, 688, 318, 80, 9, 1, 0, 1, 30, 257, 985, 1951, 2178, 1408, 524, 105, 10, 1, 0
Offset: 1

Views

Author

Christian G. Bower, May 14 2000

Keywords

Examples

			G.f. = x^(y + x*y + x^2*(y + y^2) + x^3*(y + 2*y^2 + y^3) + x^4*(y + 4*y^2 + 3*y^3 + y^4) + ...).
n\k 1  2  3  4  5  6  7  8
--:-- -- -- -- -- -- -- --
1:  1
2:  1  0
3:  1  1  0
4:  1  2  1  0
5:  1  4  3  1  0
6:  1  6  8  4  1  0
7:  1  9 19 16  5  1  0
8:  1 12 37 46 25  6  1  0
		

Crossrefs

Row sums give A032200.
Columns 2..8 are A002620(n-1), A055341, A055342, A055343, A055344, A055345, A055346.

Programs

  • Mathematica
    m = 13; A[, ] = 0;
    Do[A[x_, y_] = x (y - Sum[EulerPhi[i]/i Log[1 - A[x^i, y^i]], {i, 1, m}]) + O[x]^m + O[y]^m // Normal, {m}];
    Join[{1}, Append[CoefficientList[#/y, y], 0]& /@ Rest @ CoefficientList[ A[x, y]/x, x]] // Flatten (* Jean-François Alcover, Oct 02 2019 *)
  • PARI
    {T(n, k) = my(A = O(x)); if(k<1 || k>n, 0, for(j=1, n, A = x*y - x*sum(i=1, j, eulerphi(i)/i * log(1 - subst( subst( A + x * O(x^min(j, n\i)), x, x^i), y, y^i) ) )); polcoeff( polcoeff(A, n), k))}; /* Michael Somos, Aug 24 2015 */

Formula

G.f. satisfies A(x, y)=xy+x*CIK(A(x, y))-x. Shifts up under CIK transform.
G.f. satisfies A(x, y) = x*(y - Sum_{i>0} phi(i)/i * log(1 - A(x^i, y^i))). - Michael Somos, Aug 24 2015
Sum_k T(n, k) = A032200(n). - Michael Somos, Aug 24 2015