cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055365 Number of asymmetric mobiles (circular rooted trees) with n nodes and 4 leaves.

Original entry on oeis.org

1, 5, 19, 53, 130, 280, 556, 1024, 1788, 2971, 4752, 7338, 11013, 16099, 23020, 32249, 44390, 60109, 80234, 105670, 137520, 176979, 225479, 284562, 356049, 441890, 544360, 665883, 809258, 977455, 1173871, 1402098, 1666212, 1970508, 2319825, 2719248, 3174469
Offset: 6

Views

Author

Christian G. Bower, May 16 2000

Keywords

Examples

			G.f. = x^6 + 5*x^7 + 19*x^8 + 53*x^9 + 130*x^10 + 280*x^11 + 556*x^12 + ...
		

Crossrefs

Column 4 of A055363.
Cf. A055279.

Programs

  • PARI
    {a(n) = if( n<6, n = -n; polcoeff( (1 + x + 3*x^2 + 5*x^3 + 7*x^4 + 5*x^5 + 5*x^6 + 2*x^7 + x^8) / ((1 - x)^3 * (1 - x^2)^2 * (1 - x^3) * (1 - x^4)) + x * O(x^n), n), n = n-6; polcoeff( (1 + 2*x + 5*x^2 + 5*x^3 + 7*x^4 + 5*x^5 + 3*x^6 + x^7 + x^8) / ((1 - x)^3 * (1 - x^2)^2 * (1 - x^3) * (1 - x^4)) + x * O(x^n), n))}; /* Michael Somos, Nov 02 2014 */

Formula

G.f.: x^6*( -1-2*x-5*x^2-5*x^3-7*x^4-5*x^5-3*x^6-x^7-x^8 ) / ( (x^2+1)*(1+x+x^2)*(1+x)^3*(x-1)^7 ). - R. J. Mathar, Sep 18 2011
a(5-n) = A055279(n) for all n in Z. - Michael Somos, Nov 02 2014
0 = -30 + a(n) - 2*a(n+1) - a(n+2) + 3*a(n+3) + a(n+5) - 2*a(n+6) - 2*a(n+7) + a(n+8) + 3*a(n+10) - a(n+11) - 2*a(n+12) + a(n+13) for all n in Z. - Michael Somos, Nov 02 2014
a(n) ~ n^6 / 1152 as n -> infinity. - Michael Somos, Nov 02 2014