A055373 Invert transform applied twice to Pascal's triangle A007318.
1, 1, 1, 3, 6, 3, 9, 27, 27, 9, 27, 108, 162, 108, 27, 81, 405, 810, 810, 405, 81, 243, 1458, 3645, 4860, 3645, 1458, 243, 729, 5103, 15309, 25515, 25515, 15309, 5103, 729, 2187, 17496, 61236, 122472, 153090, 122472, 61236, 17496, 2187, 6561
Offset: 0
Examples
Triangle begins: 1; 1, 1; 3, 6, 3; 9, 27, 27, 9; 27, 108, 162, 108, 27; ...
Links
Programs
-
Mathematica
nn=10;f[list_]:=Select[list,#>0&];a=(x+y x)/(1-(x+y x));b=1/(1-a);Map[f,CoefficientList[Series[1/(2-b),{x,0,nn}],{x,y}]]//Grid (* Geoffrey Critzer, Apr 06 2013 *)
Formula
T(n,k) = 3^(n-1)*C(n, k) for n > 0.
O.g.f.: 1/(2 - A(x,y)) where A(x,y) is the o.g.f. for A055372. - Geoffrey Critzer, Apr 06 2013
Comments