A055394 Numbers that are the sum of a positive square and a positive cube.
2, 5, 9, 10, 12, 17, 24, 26, 28, 31, 33, 36, 37, 43, 44, 50, 52, 57, 63, 65, 68, 72, 73, 76, 80, 82, 89, 91, 100, 101, 108, 113, 122, 126, 127, 128, 129, 134, 141, 145, 148, 150, 152, 161, 164, 170, 171, 174, 177, 185, 189, 196, 197, 204, 206, 208, 217, 220, 223
Offset: 1
Examples
a(5)=17 since 17=3^2+2^3.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Bundeswettbewerb Mathematik 2017, Der Wettbewerb in der 47 Runde
- Bundeswettbewerb Mathematik 2017, Aufgaben und Lösungen
- The IMO Compendium, Problem 1, 22nd All-Russian Mathematical Olympiad 1996.
- Index to sequences related to Olympiads and other Mathematical competitions.
Programs
-
Maple
isA055394 := proc(n) local a,b; for b from 1 do if b^3 >= n then return false; end if; asqr := n-b^3 ; if asqr >= 0 and issqr(asqr) then return true; end if; end do: return; end proc: for n from 1 to 1000 do if isA055394(n) then printf("%d,",n) ; end if; end do: # R. J. Mathar, Dec 03 2015
-
Mathematica
r[n_, y_] := Reduce[x > 0 && n == x^2 + y^3, x, Integers]; ok[n_] := Catch[Do[If[r[n, y] =!= False, Throw[True]], {y, 1, Ceiling[n^(1/3)]}]] == True; Select[Range[300], ok] (* Jean-François Alcover, Jul 16 2012 *) solQ[n_] := Length[Reduce[p^2 + q^3 == n && p > 0 && q > 0, {p, q}, Integers]] > 0; Select[Range[224], solQ] (* Jayanta Basu, Jul 11 2013 *) isQ[n_] := For[k = 1, k <= (n-1)^(1/3), k++, If[IntegerQ[Sqrt[n-k^3]], Return[True]]; False]; Select[Range[1000], isQ] (* Jean-François Alcover, Apr 06 2021, after Charles R Greathouse IV *)
-
PARI
list(lim)=my(v=List()); for(n=1,sqrtint(lim\1-1), for(m=1,sqrtnint(lim\1-n^2,3), listput(v,n^2+m^3))); Set(v) \\ Charles R Greathouse IV, May 15 2015
-
PARI
is(n)=for(k=1,sqrtnint(n-1,3), if(issquare(n-k^3), return(1))); 0 \\ Charles R Greathouse IV, May 15 2015
Formula
a(n) >> n^(6/5). - Charles R Greathouse IV, May 15 2015
Comments