cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 53 results. Next

A273498 Numbers that are, at the same time, the sum of: two positive squares, a positive square and a positive cube, and two positive cubes. In other words, intersection of A000404, A003325 and A055394.

Original entry on oeis.org

2, 65, 72, 128, 468, 730, 793, 1241, 1332, 1458, 2000, 2745, 3528, 4097, 4160, 4608, 4825, 5096, 5840, 5913, 6344, 8125, 8192, 9000, 9325, 9928, 12168, 13357, 13498, 14824, 15626, 15633, 15689, 16354, 17640, 18369, 18737, 19721, 19773, 21953, 22681, 27792, 29449
Offset: 1

Views

Author

Altug Alkan, May 23 2016

Keywords

Comments

Numbers n such that n = x^a + y^b where x,y > 0, is soluble for all 1 < a <= b < 4.
Perfect power terms are 128, 8192, 97344, 140625, 524288, 1500625, ...

Examples

			793 is a term because 793 = 3^2 + 28^2 = 8^2 + 9^3 = 4^3 + 9^3.
		

Crossrefs

Programs

  • PARI
    isA003325(n)=for(k=1, sqrtnint(n\2, 3), ispower(n-k^3, 3) && return(1))
    isA000404(n) = for( i=1, #n=factor(n)~%4, n[1, i]==3 && n[2, i]%2 && return); n && ( vecmin(n[1, ])==1 || (n[1, 1]==2 && n[2, 1]%2))
    isA055394(n) = for(k=1, sqrtnint(n-1, 3), if(issquare(n-k^3), return(1))); 0
    lista(nn) = for(n=1, nn, if(isA003325(n) && isA000404(n) && isA055394(n), print1(n, ", ")));
    
  • PARI
    isA000404(n)=my(f=factor(n)); for(i=1, #f~, if(f[i,1]%4==3 && f[i,2]%2, return(0))); n>1 && (vecmin(f[,1]%4)==1 || (f[1, 1]==2 && f[1,2]%2))
    isA055394(n) = for(k=1, sqrtnint(n-1,3), if(issquare(n-k^3), return(1))); 0
    list(lim)=my(v=List(),n3,t); lim\=1; for(n=1,sqrtnint(lim-1,3), n3=n^3; for(m=1,sqrtnint(lim-n3,3), t=n3+m^3; if(isA000404(t) && isA055394(t), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, May 31 2016

A111925 Numbers of the form a^2 + b^4, with a,b > 0.

Original entry on oeis.org

2, 5, 10, 17, 20, 25, 26, 32, 37, 41, 50, 52, 65, 80, 82, 85, 90, 97, 101, 106, 116, 117, 122, 130, 137, 145, 160, 162, 170, 181, 185, 197, 202, 212, 225, 226, 241, 250, 257, 260, 265, 272, 277, 281, 290, 292, 305, 306, 320, 325, 337, 340, 356, 362, 370, 377
Offset: 1

Views

Author

Stefan Steinerberger, Nov 25 2005

Keywords

Comments

Subsequence of A000404.
Although there are squares, cubes, fifth powers, ... in this sequence, there are no fourth powers. - Altug Alkan, Apr 09 2016
Also, numbers z such that z^5 = x^2 + y^4 for x, y >= 1. - M. F. Hasler, Apr 16 2018
The Friedlander-Iwaniec theorem states that there are infinitely many prime numbers in this sequence. These primes are in A028916. - Bernard Schott, Mar 09 2019

Examples

			25 = 3^2 + 2^4, so 25 is an element of the sequence.
		

Crossrefs

Cf. A055394, A022549; complement of A111909; subsequence of A000404.
Cf. A028916 (subsequence of primes).

Programs

  • Maple
    isA111925 := proc(n)
        local a,b ;
        for a from 1 do
            if a^4 >= n then
                return false;
            end if;
            b := n-a^4 ;
            if issqr(b) then
                return true;
            end if;
        end do:
    end proc:
    A111925 := proc(n)
        option remember;
        if n = 1 then
            2;
        else
            for a from procname(n-1)+1 do
                if isA111925(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc: # R. J. Mathar, Apr 22 2013
  • Mathematica
    With[{nn=60},Take[Union[First[#]^2+Last[#]^4&/@Tuples[Range[nn],2]],nn]] (* Harvey P. Dale, Jul 09 2014 *)
  • PARI
    list(lim)=my(v=List(),t); lim\=1; for(b=1,sqrtnint(lim-1,4), t=b^4; for(a=1,sqrtint(lim-t), listput(v,t+a^2))); Set(v) \\ Charles R Greathouse IV, Jun 07 2016
    
  • PARI
    is(n)=for(b=1,sqrtnint(n-1,4), if(issquare(n-b^4), return(1))); 0 \\ Charles R Greathouse IV, Jun 07 2016

A022549 Sum of a square and a nonnegative cube.

Original entry on oeis.org

0, 1, 2, 4, 5, 8, 9, 10, 12, 16, 17, 24, 25, 26, 27, 28, 31, 33, 36, 37, 43, 44, 49, 50, 52, 57, 63, 64, 65, 68, 72, 73, 76, 80, 81, 82, 89, 91, 100, 101, 108, 113, 121, 122, 125, 126, 127, 128, 129, 134, 141, 144, 145
Offset: 1

Views

Author

Keywords

Comments

It appears that there are no modular constraints on this sequence; i.e., every residue class of every integer has representatives here. - Franklin T. Adams-Watters, Dec 03 2009
A045634(a(n)) > 0. - Reinhard Zumkeller, Jul 17 2010

Crossrefs

Complement of A022550; A002760 and A179509 are subsequences.

Programs

  • Mathematica
    q=30; imax=q^2; Select[Union[Flatten[Table[x^2+y^3, {y,0,q^(2/3)}, {x,0,q}]]], #<=imax&] (* Vladimir Joseph Stephan Orlovsky, Apr 20 2011 *)
  • PARI
    is(n)=for(k=0,sqrtnint(n,3), if(issquare(n-k^3), return(1))); 0 \\ Charles R Greathouse IV, Aug 24 2020
    
  • PARI
    list(lim)=my(v=List(),t); for(k=0,sqrtnint(lim\=1,3), t=k^3; for(n=0,sqrtint(lim-t), listput(v,t+n^2))); Set(v) \\ Charles R Greathouse IV, Aug 24 2020

A066649 Primes of the form a^2 + b^3 with a, b > 0.

Original entry on oeis.org

2, 5, 17, 31, 37, 43, 73, 89, 101, 113, 127, 197, 223, 233, 241, 257, 269, 283, 337, 347, 353, 359, 379, 401, 443, 449, 487, 521, 577, 593, 599, 677, 701, 733, 743, 811, 827, 829, 919, 953, 1009, 1019, 1049, 1051, 1097, 1129, 1153, 1213, 1289, 1297, 1361
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 17 2001

Keywords

Examples

			A000040(26) = 101 = 10^2 + 1^3, therefore 101 is a term.
A000040(51) = a(13) = 233 = 225 + 8 = 15^2 + 2^3.
		

Crossrefs

Programs

  • Mathematica
    lst={};Do[Do[p=n^2+m^3;If[PrimeQ[p],AppendTo[lst,p]],{n,5!}],{m,5!}];Take[Union[lst],123] (* Vladimir Joseph Stephan Orlovsky, May 24 2009 *)
  • PARI
    list(lim)=my(v=List()); for(y=1,sqrtnint(lim\=1,3), my(y3=y^3); for(x=1,sqrtint(lim-y3), my(p=y3+x^2); if(isprime(p), listput(v,p)))); Set(v) \\ Charles R Greathouse IV, Mar 11 2025

Formula

On Conjecture C_a(1/17), this sequence is infinite and a(n) << n^(6/5) log n, see Merikoski link. - Charles R Greathouse IV, Mar 11 2025

A100291 Numbers of the form a^4 + b^3 with a, b > 0.

Original entry on oeis.org

2, 9, 17, 24, 28, 43, 65, 80, 82, 89, 108, 126, 141, 145, 206, 217, 232, 257, 264, 283, 297, 320, 344, 359, 381, 424, 472, 513, 528, 593, 599, 626, 633, 652, 689, 730, 745, 750, 768, 810, 841, 968, 985, 1001, 1016, 1081, 1137, 1256, 1297, 1304, 1323, 1332
Offset: 1

Views

Author

T. D. Noe, Nov 18 2004

Keywords

Crossrefs

Cf. A100271 (primes of the form a^4 + b^3).
Cf. A055394 (a^2 + b^3: contains this as subsequence), A111925 (a^2 + b^4), A100291 (a^4 + b^3), A100292 (a^5 + b^2), A100293 (a^5 + b^3), A100294 (a^5 + b^4), A303372 (a^2 + b^6), A303373 (a^3 + b^6), A303374 (a^4 + b^6), A303375 (a^5 + b^6).
Roots of 5th powers are listed in A300565 (z^5 = x^3 + y^4); see also A300564 (z^4 = x^2 + y^3) and A242183, A300566 (z^6 = x^4 + y^5), A300567 (z^7 = x^6 + y^5), A302174.

Programs

  • Mathematica
    lst={}; Do[p=a^4+b^3; If[p<2000, AppendTo[lst, p]], {a, 64}, {b, 256}]; Union[lst]
    With[{nn=20},Select[Union[#[[1]]^4+#[[2]]^3&/@Tuples[Range[20],2]],#<= nn^3+1&]] (* Harvey P. Dale, May 27 2020 *)
  • PARI
    is(n)=for(a=1, sqrtnint(n-1, 4), ispower(n-a^4, 3) && return(a)) \\ Returns a > 0 if n is in the sequence, or 0 otherwise. - M. F. Hasler, Apr 25 2018
    
  • PARI
    list(lim)=my(v=List());for(b=1,sqrtnint(lim\=1,3), my(b3=b^3); for(a=1,sqrtnint(lim-b3,4), listput(v,a^4+b3))); Set(v) \\ Charles R Greathouse IV, Jul 26 2021

Extensions

Edited by M. F. Hasler, Apr 25 2018

A100292 Numbers of the form a^5 + b^2 with a, b > 0.

Original entry on oeis.org

2, 5, 10, 17, 26, 33, 36, 37, 41, 48, 50, 57, 65, 68, 81, 82, 96, 101, 113, 122, 132, 145, 153, 170, 176, 197, 201, 226, 228, 244, 247, 252, 257, 259, 268, 279, 288, 290, 292, 307, 321, 324, 325, 343, 356, 362, 364, 387, 393, 401, 412, 432, 439, 442, 468, 473
Offset: 1

Views

Author

T. D. Noe, Nov 18 2004

Keywords

Crossrefs

Cf. A100272 (primes of the form a^5 + b^2).
Cf. A000404 (a^2 + b^2), A055394 (a^2 + b^3), A111925 (a^2 + b^4), A100291 (a^4 + b^3), A100292 (a^5 + b^2), A100293 (a^5 + b^3), A100294 (a^5 + b^4), A303372 (a^2 + b^6), A303373 (a^3 + b^6), A303374 (a^4 + b^6), A303375 (a^5 + b^6).

Programs

  • Mathematica
    lst={}; Do[p=a^5+b^2; If[p<1000, AppendTo[lst, p]], {a, 16}, {b, 1024}]; Union[lst]
  • PARI
    is(n, m=5)=for(a=1, sqrtnint(n-1, m), issquare(n-a^m) && return(a)) \\ M. F. Hasler, Apr 25 2018

A100294 Numbers of the form a^5 + b^4 with a, b > 0.

Original entry on oeis.org

2, 17, 33, 48, 82, 113, 244, 257, 259, 288, 324, 499, 626, 657, 868, 1025, 1040, 1105, 1280, 1297, 1328, 1539, 1649, 2320, 2402, 2433, 2644, 3126, 3141, 3206, 3381, 3425, 3750, 4097, 4128, 4339, 4421, 5120, 5526, 6562, 6593, 6804, 7221, 7585, 7777, 7792
Offset: 1

Views

Author

T. D. Noe, Nov 18 2004

Keywords

Comments

In view of computing A300566, it would be interesting to have an efficient way to check whether a given (large) n is in this sequence. - M. F. Hasler, Apr 25 2018

Crossrefs

Cf. A100274 (primes of the form a^5 + b^4).
Subsequence of A100292 (a^5 + b^2); see also A055394 (a^2 + b^3), A111925 (a^2 + b^4), A100291 (a^4 + b^3), A100293 (a^5 + b^3), A303372 (a^2 + b^6), A303373 (a^3 + b^6), A303374 (a^4 + b^6), A303375 (a^5 + b^6).
Roots of 6th powers are listed in A300566 (z such that z^6 = x^5 + y^4 for some x, y >= 1); see also A300564 (z^4 = x^3 + y^2) and A242183, A300565 (z^5 = x^4 + y^3), A300567 (z^7 = x^6 + y^5), A302174.

Programs

  • Mathematica
    lst={}; Do[p=a^5+b^4; If[p<15000, AppendTo[lst, p]], {a, 16}, {b, 32}]; Union[lst]
  • PARI
    A100294_vec(L=10^6, k=4, m=5, S=List())={for(a=1, sqrtnint(L-1, m), for(b=1, sqrtnint(L-a^m, k), listput(S, a^m+b^k))); Set(S)} \\ all terms up to limit L. - M. F. Hasler, Apr 25 2018
    
  • PARI
    is(n, k=4, m=5)=for(a=1, sqrtnint(n-1, m), ispower(n-a^m,k) && return(a)) \\ Returns a > 0 if n is in the sequence, or 0 otherwise. - M. F. Hasler, Apr 25 2018

A303375 Numbers of the form a^5 + b^6, with integers a, b > 0.

Original entry on oeis.org

2, 33, 65, 96, 244, 307, 730, 761, 972, 1025, 1088, 1753, 3126, 3189, 3854, 4097, 4128, 4339, 5120, 7221, 7777, 7840, 8505, 11872, 15626, 15657, 15868, 16649, 16808, 16871, 17536, 18750, 20903, 23401, 32432, 32769, 32832, 33497, 36864, 46657, 46688, 46899, 47680, 48393
Offset: 1

Views

Author

M. F. Hasler, Apr 22 2018

Keywords

Comments

Although it is easy to produce many terms of this sequence, it is nontrivial to check whether a very large number is of this form.
This sequence is among others motivated by the hard-to-compute sequence A300567 = numbers z such that z^7 = x^5 + y^6 for some x, y >= 1.

Crossrefs

Cf. A000404 (a^2 + b^2), A055394 (a^2 + b^3), A111925 (a^2 + b^4), A100291 (a^4 + b^3), A100292 (a^5 + b^2), A100293 (a^5 + b^3), A100294 (a^5 + b^4).
Cf. A303372 (a^2 + b^6), A303373 (a^3 + b^6), A303374 (a^4 + b^6).
See also A300567: numbers z such that z^7 = x^5 + y^6 for some x, y >= 1.

Programs

  • PARI
    is(n,k=5,m=6)=for(b=1,sqrtnint(n-1,m),ispower(n-b^m,n)&&return(b)) \\ Returns b > 0 if n is in the sequence, else 0.
    A303375_vec(L=10^5,k=5,m=6,S=List())={for(a=1,sqrtnint(L-1,m),for(b=1,sqrtnint(L-a^m,k), listput(S,a^m+b^k)));Set(S)} \\ all terms up to limit L

Formula

a(n) >> n^(30/11). Probably this is the correct asymptotic order. - Charles R Greathouse IV, Jan 23 2025

A303374 Numbers of the form a^4 + b^6, with integers a, b > 0.

Original entry on oeis.org

2, 17, 65, 80, 82, 145, 257, 320, 626, 689, 730, 745, 810, 985, 1297, 1354, 1360, 2025, 2402, 2465, 3130, 4097, 4112, 4160, 4177, 4352, 4721, 4825, 5392, 6497, 6562, 6625, 7290, 8192, 10001, 10064, 10657, 10729, 14096, 14642, 14705, 15370, 15626, 15641, 15706, 15881
Offset: 1

Views

Author

M. F. Hasler, Apr 22 2018

Keywords

Comments

A subsequence of A000404 (a^2 + b^2), A055394 (a^2 + b^3), A111925 (a^4 + b^2), A100291 (a^4 + b^3), A303372 (a^2 + b^6).
Although it is easy to produce many terms of this sequence, it is nontrivial to check whether a very large number is of this form. Maybe the most efficient way is to consider decompositions of n into sums of two positive squares (see sum2sqr in A133388), and check if one of the terms is a third power and the other a fourth power.

Crossrefs

Cf. A055394 (a^2 + b^3), A111925 (a^2 + b^4), A100291 (a^4 + b^3), A100292 (a^5 + b^2), A100293 (a^5 + b^3), A100294 (a^5 + b^4).
Cf. A303372 (a^2 + b^6), A303373 (a^3 + b^6), A303375 (a^5 + b^6).

Programs

  • Mathematica
    Take[Flatten[Table[a^4+b^6,{a,20},{b,20}]]//Union,50] (* Harvey P. Dale, Jul 17 2025 *)
  • PARI
    is(n,k=4,m=6)=for(b=1,sqrtnint(n-1,m),ispower(n-b^m,k)&&return(b)) \\ Returns b > 0 if n is in the sequence, else 0.
    is(n,L=sum2sqr(n))={for(i=1,#L,L[i][1]&&for(j=1,2,ispower(L[i][j],3)&&issquare(L[i][3-j])&&return(L[i][j])))} \\ See A133388 for sum2sqr(). Much faster than the above for n >> 10^30.
    A303374(L=10^5,k=4,m=6,S=[])={for(a=1,sqrtnint(L-1,m),for(b=1,sqrtnint(L-a^m,k),S=setunion(S,[a^m+b^k])));S}

A303372 Numbers of the form a^2 + b^6, with integers a, b > 0.

Original entry on oeis.org

2, 5, 10, 17, 26, 37, 50, 65, 68, 73, 80, 82, 89, 100, 101, 113, 122, 128, 145, 164, 170, 185, 197, 208, 226, 233, 257, 260, 289, 290, 320, 325, 353, 362, 388, 401, 425, 442, 464, 485, 505, 530, 548, 577, 593, 626, 640, 677, 689, 730, 733, 738, 740, 745, 754, 765, 778
Offset: 1

Views

Author

M. F. Hasler, Apr 22 2018

Keywords

Comments

A subsequence of A055394, the numbers of the form a^2 + b^3.
Although it is easy to produce many terms of this sequence, it is nontrivial to check whether a very large number is of this form.

Examples

			The first terms are 1^2 + 1^6 = 2, 2^2 + 1^6 = 5, 3^2 + 1^6 = 10, 4^2 + 1^6 = 17, 5^2 + 1^6 = 26, ..., 8^2 + 1^6 = 1^2 + 2^6 = 65, 2^2 + 2^6 = 68, 3^2 + 2^6 = 73, ...
		

Crossrefs

Cf. A055394 (a^2 + b^3), A111925 (a^2 + b^4), A100291 (a^4 + b^3), A100292 (a^5 + b^2), A100293 (a^5 + b^3), A100294 (a^5 + b^4).
Cf. A303373 (a^3 + b^6), A303374 (a^4 + b^6), A303375 (a^5 + b^6).

Programs

  • PARI
    is(n,k=2,m=6)=for(b=1,sqrtnint(n-1,m),ispower(n-b^m,k)&&return(b)) \\ Returns b > 0 if n is in the sequence, else 0.
    A303372_vec(L=10^5,k=2,m=6,S=List())={for(a=1,sqrtnint(L-1,m),for(b=1,sqrtnint(L-a^m,k),listput(S,a^m+b^k)));Set(S)} \\ List of all terms up to limit L
Showing 1-10 of 53 results. Next