A271576 Integers whose square is of the form x^2 + y^4, with x,y > 0 (see A111925).
5, 15, 20, 34, 39, 41, 45, 60, 65, 80, 85, 111, 125, 135, 136, 145, 150, 156, 164, 175, 180, 194, 219, 240, 245, 255, 260, 265, 306, 313, 320, 325, 340, 351, 353, 369, 371, 375, 405, 410, 444, 445, 455, 500, 505, 514, 540, 544, 580, 585, 600, 605, 609, 624, 629, 656, 671, 674, 689
Offset: 1
Keywords
Examples
5^2 = 25 = 9 + 16 = 3^2 + 2^4, so 5 is a term.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
Select[Range@ 200, Resolve[Exists[{x, y}, Reduce[#^2 == x^2 + y^4, {x, y}, Integers], And[x > 0, y > 0]]] &] (* Michael De Vlieger, Apr 10 2016 *)
-
PARI
isok(n) = n = n^2; for (k=1, n-1, if (issquare(k) && (p=ispower(n-k, 4)), return (1)))
-
PARI
is(n)=my(n2=n^2); for(b=sqrtnint(2*n-2,4)+1, sqrtint(n-1), if(issquare(n2-b^4), return(1))); 0 \\ Charles R Greathouse IV, Nov 16 2021
Comments