cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A011379 a(n) = n^2*(n+1).

Original entry on oeis.org

0, 2, 12, 36, 80, 150, 252, 392, 576, 810, 1100, 1452, 1872, 2366, 2940, 3600, 4352, 5202, 6156, 7220, 8400, 9702, 11132, 12696, 14400, 16250, 18252, 20412, 22736, 25230, 27900, 30752, 33792, 37026, 40460, 44100, 47952, 52022, 56316, 60840
Offset: 0

Views

Author

Glen Burch (gburch(AT)erols.com), Felice Russo

Keywords

Comments

(1) a(n) = sum of second string of n triangular numbers - sum of first n triangular numbers, or the 2n-th partial sum of triangular numbers (A000217) - the n-th partial sum of triangular numbers (A000217). The same for natural numbers gives squares. (2) a(n) = (n-th triangular number)*(the n-th even number) = n(n+1)/2 * (2n). - Amarnath Murthy, Nov 05 2002
Let M(n) be the n X n matrix m(i,j)=1/(i+j+x), let P(n,x) = (Product_{i=0..n-1} i!^2)/det(M(n)). Then P(n,x) is a polynomial with integer coefficients of degree n^2 and a(n) is the coefficient of x^(n^2-1). - Benoit Cloitre, Jan 15 2003
Y values of solutions of the equation: (X-Y)^3-X*Y=0. X values are a(n)=n*(n+1)^2 (see A045991) - Mohamed Bouhamida, May 09 2006
a(2d-1) is the number of self-avoiding walk of length 3 in the d-dimensional hypercubic lattice. - Michael Somos, Sep 06 2006
a(n) mod 10 is periodic 5: repeat [0, 2, 2, 6, 0]. - Mohamed Bouhamida, Sep 05 2009
This sequence is related to A005449 by a(n) = n*A005449(n)-sum(A005449(i), i=0..n-1), and this is the case d=3 in the identity n^2*(d*n+d-2)/2 - Sum_{k=0..n-1} k*(d*k+d-2)/2 = n*(n+d)*(2*d*n+d-3)/6. - Bruno Berselli, Nov 18 2010
Using (n, n+1) to generate a primitive Pythagorean triangle, the sides will be 2*n+1, 2*(n^2+n), and 2*n^2+2*n+1. Inscribing the largest rectangle with integral sides will have sides of length n and n^2+n. Side n is collinear to side 2*n+1 of the triangle and side n^2+n is collinear to side 2*(n^2+n) of the triangle. The areas of theses rectangles are a(n). - J. M. Bergot, Sep 22 2011
a(n+1) is the sum of n-th row of the triangle in A195437. - Reinhard Zumkeller, Nov 23 2011
Partial sums of A049450. - Omar E. Pol, Jan 12 2013
From Jon Perry, May 11 2013: (Start)
Define a 'stable brick triangle' as:
-----
| c |
---------
| a | | b |
----------
with a, b, c > 0 and c <= a + b. This can be visualized as two bricks with a third brick on top. The third brick can only be as strong as a+b, otherwise the wall collapses - for example, (1,2,4) is unstable.
a(n) gives the number of stable brick triangles that can be formed if the two supporting bricks are 1 <= a <= n and 1 <= b <= n: a(n) = Sum_{a=1..n} Sum_{b=1..n} Sum_c 1 = n^3 + n^2 as given in the Adamchuk formula.
So for i=j=n=2 we have 4:
1 2 3 4
2 2 2 2 2 2 2 2
For example, n=2 gives 2 from [a=1,b=1], 3 from both [a=1,b=2] and [a=2,b=1] and 4 from [a=2,b=2] so a(2) = 2 + 3 + 3 + 4 = 12. (End)
Define the infinite square array m(n,k) by m(n,k) = (n-k)^2 if n >= k >= 0 and by m(n,k) = (k+n)*(k-n) if 0 <= n <= k. This contains A120070 below the diagonal. Then a(n) = Sum_{k=0..n} m(n,k) + Sum_{r=0..n} m(r,n), the "hook sum" of the terms to the left of m(n,n) and above m(n,n) with irrelevant (vanishing) terms on the diagonal. - J. M. Bergot, Aug 16 2013
a(n) is the sum of all pairs with repetition drawn from the set of odd numbers 2*n-3. This is similar to A027480 but using the odd integers instead. Example using n=3 gives the odd numbers 1,3,5: 1+1, 1+3, 1+5, 3+3, 3+5,5+5 having a total of 36=a(3). - J. M. Bergot, Apr 05 2016
a(n) is the first Zagreb index of the complete graph K[n+1]. The first Zagreb index of a simple connected graph is the sum of the squared degrees of its vertices. Alternately, it is the sum of the degree sums d(i)+d(j) over all edges ij of the graph. - Emeric Deutsch, Nov 07 2016
a(n-2) is the maximum sigma irregularity over all trees with n vertices. The extremal graphs are stars. (The sigma irregularity of a graph is the sum of squares of the differences between the degrees over all edges of the graph.) - Allan Bickle, Jun 14 2023

Examples

			a(3) = 3^2+3^3 = 36.
		

References

  • L. B. W. Jolley, "Summation of Series", Dover Publications, 1961, pp. 50, 64.

Crossrefs

Cf. A011379, A181617, A270205 (sigma irregularities of maximal k-degenerate graphs).

Programs

Formula

a(n) = 2*A002411(n).
a(n) = Sum_{j=1..n} (Sum_{i=1..n} (i+j)), row sums of A126890 skipping numbers in the first column. - Alexander Adamchuk, Oct 12 2004
Sum_{n>0} 1/a(n) = (Pi^2 - 6)/6 = 0.6449340... [Jolley eq 272] - Gary W. Adamson, Dec 22 2006
a(n) = 2*n*binomial(n+1,2) = 2*n*A000217(n). - Arkadiusz Wesolowski, Feb 10 2012
G.f.: 2*x*(1 + 2*x)/(1 - x)^4. - Arkadiusz Wesolowski, Feb 11 2012
a(n) = A000330(n) + A002412(n) = A000292(n) + A002413(n). - Omar E. Pol, Jan 11 2013
a(n) = A245334(n+1,2), n > 0. - Reinhard Zumkeller, Aug 31 2014
Sum_{n>=1} 1/a(n) = A013661-1. - R. J. Mathar, Oct 18 2019 [corrected by Jason Yuen, Aug 04 2024]
Sum_{n>=1} (-1)^(n+1)/a(n) = 1 + Pi^2/12 - 2*log(2). - Amiram Eldar, Jul 04 2020
E.g.f.: exp(x)*x*(2 + 4*x + x^2). - Stefano Spezia, May 20 2021
a(n) = n*A002378(n) = A000578(n) + A000290(n). - J.S. Seneschal, Jun 18 2024

A055394 Numbers that are the sum of a positive square and a positive cube.

Original entry on oeis.org

2, 5, 9, 10, 12, 17, 24, 26, 28, 31, 33, 36, 37, 43, 44, 50, 52, 57, 63, 65, 68, 72, 73, 76, 80, 82, 89, 91, 100, 101, 108, 113, 122, 126, 127, 128, 129, 134, 141, 145, 148, 150, 152, 161, 164, 170, 171, 174, 177, 185, 189, 196, 197, 204, 206, 208, 217, 220, 223
Offset: 1

Views

Author

Henry Bottomley, May 12 2000

Keywords

Comments

This sequence was the subject of a question in the German mathematics competition Bundeswettbewerb Mathematik 2017 (see links). The second round contained a question A4 which asks readers to "Show that there are an infinite number of a such that a-1, a, and a+1 are members of A055394". - N. J. A. Sloane, Jul 04 2017 and Oct 14 2017
This sequence was also the subject of a question in the 22nd All-Russian Mathematical Olympiad 1996 (see link). The 1st question of the final round for Grade 9 asked competitors "What numbers are more frequent among the integers from 1 to 1000000: those that can be written as a sum of a square and a positive cube, or those that cannot be?" Answer is that there are more numbers not of this form. - Bernard Schott, Feb 18 2022

Examples

			a(5)=17 since 17=3^2+2^3.
		

Crossrefs

Cf. A022549, A055393, A078360. Complement of A066650.

Programs

  • Maple
    isA055394 := proc(n)
        local a,b;
        for b from 1 do
            if b^3 >= n then
                return false;
            end if;
            asqr := n-b^3 ;
            if asqr >= 0 and issqr(asqr) then
                return true;
            end if;
        end do:
        return;
    end proc:
    for n from 1 to 1000 do
        if isA055394(n) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, Dec 03 2015
  • Mathematica
    r[n_, y_] := Reduce[x > 0 && n == x^2 + y^3, x, Integers]; ok[n_] := Catch[Do[If[r[n, y] =!= False, Throw[True]], {y, 1, Ceiling[n^(1/3)]}]] == True; Select[Range[300], ok] (* Jean-François Alcover, Jul 16 2012 *)
    solQ[n_] := Length[Reduce[p^2 + q^3 == n && p > 0 && q > 0, {p, q}, Integers]] > 0; Select[Range[224], solQ] (* Jayanta Basu, Jul 11 2013 *)
    isQ[n_] := For[k = 1, k <= (n-1)^(1/3), k++, If[IntegerQ[Sqrt[n-k^3]], Return[True]]; False];
    Select[Range[1000], isQ] (* Jean-François Alcover, Apr 06 2021, after Charles R Greathouse IV *)
  • PARI
    list(lim)=my(v=List()); for(n=1,sqrtint(lim\1-1), for(m=1,sqrtnint(lim\1-n^2,3), listput(v,n^2+m^3))); Set(v) \\ Charles R Greathouse IV, May 15 2015
    
  • PARI
    is(n)=for(k=1,sqrtnint(n-1,3), if(issquare(n-k^3), return(1))); 0 \\ Charles R Greathouse IV, May 15 2015

Formula

a(n) >> n^(6/5). - Charles R Greathouse IV, May 15 2015

A111925 Numbers of the form a^2 + b^4, with a,b > 0.

Original entry on oeis.org

2, 5, 10, 17, 20, 25, 26, 32, 37, 41, 50, 52, 65, 80, 82, 85, 90, 97, 101, 106, 116, 117, 122, 130, 137, 145, 160, 162, 170, 181, 185, 197, 202, 212, 225, 226, 241, 250, 257, 260, 265, 272, 277, 281, 290, 292, 305, 306, 320, 325, 337, 340, 356, 362, 370, 377
Offset: 1

Views

Author

Stefan Steinerberger, Nov 25 2005

Keywords

Comments

Subsequence of A000404.
Although there are squares, cubes, fifth powers, ... in this sequence, there are no fourth powers. - Altug Alkan, Apr 09 2016
Also, numbers z such that z^5 = x^2 + y^4 for x, y >= 1. - M. F. Hasler, Apr 16 2018
The Friedlander-Iwaniec theorem states that there are infinitely many prime numbers in this sequence. These primes are in A028916. - Bernard Schott, Mar 09 2019

Examples

			25 = 3^2 + 2^4, so 25 is an element of the sequence.
		

Crossrefs

Cf. A055394, A022549; complement of A111909; subsequence of A000404.
Cf. A028916 (subsequence of primes).

Programs

  • Maple
    isA111925 := proc(n)
        local a,b ;
        for a from 1 do
            if a^4 >= n then
                return false;
            end if;
            b := n-a^4 ;
            if issqr(b) then
                return true;
            end if;
        end do:
    end proc:
    A111925 := proc(n)
        option remember;
        if n = 1 then
            2;
        else
            for a from procname(n-1)+1 do
                if isA111925(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc: # R. J. Mathar, Apr 22 2013
  • Mathematica
    With[{nn=60},Take[Union[First[#]^2+Last[#]^4&/@Tuples[Range[nn],2]],nn]] (* Harvey P. Dale, Jul 09 2014 *)
  • PARI
    list(lim)=my(v=List(),t); lim\=1; for(b=1,sqrtnint(lim-1,4), t=b^4; for(a=1,sqrtint(lim-t), listput(v,t+a^2))); Set(v) \\ Charles R Greathouse IV, Jun 07 2016
    
  • PARI
    is(n)=for(b=1,sqrtnint(n-1,4), if(issquare(n-b^4), return(1))); 0 \\ Charles R Greathouse IV, Jun 07 2016

A002760 Squares and cubes.

Original entry on oeis.org

0, 1, 4, 8, 9, 16, 25, 27, 36, 49, 64, 81, 100, 121, 125, 144, 169, 196, 216, 225, 256, 289, 324, 343, 361, 400, 441, 484, 512, 529, 576, 625, 676, 729, 784, 841, 900, 961, 1000, 1024, 1089, 1156, 1225, 1296, 1331, 1369, 1444, 1521, 1600, 1681, 1728, 1764, 1849
Offset: 1

Views

Author

Keywords

Comments

Catalan's Conjecture states that 8 and 9 are the only pair of consecutive numbers in this sequence. The conjecture was established in 2003 by Mihilescu.
Subsequence of A022549. - Reinhard Zumkeller, Jul 17 2010

References

  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 68.
  • Clifford A. Pickover, The Math Book, Sterling, NY, 2009; see p. 236.

Crossrefs

Cf. A131799; union of A000290 and A000578.
First differences in A075052. [From Zak Seidov, May 10 2010]

Programs

  • Magma
    [n: n in [0..1600] | IsIntegral(n^(1/3)) or IsIntegral(n^(1/2))]; // Bruno Berselli, Feb 09 2016
    
  • Mathematica
    nMax=2000;Union[Range[0,nMax^(1/2)]^2,Range[0,nMax^(1/3)]^3] (* Vladimir Joseph Stephan Orlovsky, Apr 11 2011 *)
    nxt[n_] := Min[ Floor[1 + Sqrt[n]]^2, Floor[1 + n^(1/3)]^3]; NestList[ nxt, 0, 55] (* Robert G. Wilson v, Aug 16 2014 *)
  • PARI
    isok(n) = issquare(n) || ispower(n, 3); \\ Michel Marcus, Mar 29 2016
    
  • Python
    from math import isqrt
    from sympy import integer_nthroot
    def A002760(n):
        def f(x): return n-1+x+integer_nthroot(x,6)[0]-integer_nthroot(x,3)[0]-isqrt(x)
        m, k = n-1, f(n-1)
        while m != k:
            m, k = k, f(k)
        return m # Chai Wah Wu, Aug 09 2024

Formula

Sum_{n>=2} 1/a(n) = zeta(2) + zeta(3) - zeta(6). - Amiram Eldar, Dec 19 2020

A045634 Number of ways in which n can be partitioned as a sum of a square and cube.

Original entry on oeis.org

1, 2, 1, 0, 1, 1, 0, 0, 1, 2, 1, 0, 1, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 2, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 2, 2, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2
Offset: 0

Views

Author

Keywords

Comments

a(A022550(n))=0; a(A179509(n))=1; a(A022549(n))>0; a(A060861(n))=n. [From Reinhard Zumkeller, Jul 17 2010]

Examples

			a(9)=2 because 9=2^3+1^2 and 9=3^2+0^3.
		

Crossrefs

Programs

  • Maple
    M:=100; M2:=M^2; t0:=array(0..M2);
    for i from 0 to M2 do t0[i]:=0; od:
    for a from 0 to M do for b from 0 to M do
    i:=a^2+b^3; if i <= M2 then t0[i]:=t0[i]+1; fi; od: od:
    [seq(t0[i],i=0..M2)];
  • Mathematica
    max = 100; Clear[a]; a[_] = 0;
    Do[n = i^2 + j^3; a[n] += 1, {i, 0, Sqrt[max]}, {j, 0, max^(1/3)}];
    Table[a[n], {n, 0, max}] (* Jean-François Alcover, Aug 02 2018 *)

Extensions

More terms from Erich Friedman

A022550 Numbers that are not the sum of a square and a nonnegative cube.

Original entry on oeis.org

3, 6, 7, 11, 13, 14, 15, 18, 19, 20, 21, 22, 23, 29, 30, 32, 34, 35, 38, 39, 40, 41, 42, 45, 46, 47, 48, 51, 53, 54, 55, 56, 58, 59, 60, 61, 62, 66, 67, 69, 70, 71, 74, 75, 77, 78, 79
Offset: 1

Views

Author

Keywords

Comments

Complement of A022549; A045634(a(n))=0. - Reinhard Zumkeller, Jul 17 2010

A123364 Primes of the form a^2 + b^3 (with repetition).

Original entry on oeis.org

2, 5, 17, 17, 31, 37, 43, 73, 89, 89, 101, 113, 127, 197, 223, 233, 233, 241, 257, 269, 283, 337, 347, 353, 359, 379, 401, 443, 449, 449, 487, 521, 577, 577, 593, 593, 599, 677, 701, 733, 743, 811, 827, 829, 919, 953, 1009, 1019, 1049, 1051, 1097, 1129, 1153
Offset: 1

Views

Author

Zak Seidov, Oct 12 2006

Keywords

Comments

Primes in A022549, A123291. Cf. A066649 Primes of the form a^2 + b^3 (without repetition), with a, b > 0.

Examples

			Each of 17, 89, 233 appears two times because 17=3^2+2^3=4^2+1^3, 89=5^2+4^3=9^2+2^3, 233=13^2+4^3=15^2+2^3;
2089 appears three times because 2089=19^2+12^3=33^2+10^3=45^2+4^3;
65537 appears four times because 65537=122^2+37^3=219^2+26^3=255^2+8^3=256^2+1^3.
		

Crossrefs

Programs

A055393 Sum of a square and a nonnegative cube in more than one way.

Original entry on oeis.org

1, 9, 17, 36, 64, 65, 89, 100, 108, 129, 145, 196, 225, 233, 252, 289, 297, 316, 388, 441, 449, 464, 505, 512, 537, 548, 576, 577, 593, 633, 729, 730, 737, 745, 784, 792, 793, 801, 841, 873, 1000, 1025, 1088, 1090, 1116, 1225, 1289, 1296, 1304, 1305, 1367
Offset: 1

Views

Author

Henry Bottomley, May 12 2000

Keywords

Examples

			a(12) = 225 since 225 = 6^3 + 3^2 = 5^3 + 10^2 = 0^3 + 15^2.
		

Crossrefs

Programs

  • Mathematica
    nn = 2000; t = Table[0, {nn}]; Do[n = i^2 + j^3; If[0 < n <= nn, t[[n]]++], {i, 0, Sqrt[nn]}, {j, 0, nn^(1/3)}]; Flatten[Position[t, ?(# > 1 &)]] (* _T. D. Noe, Dec 08 2012 *)

Extensions

Extended by T. D. Noe, Dec 08 2012

A214891 Numbers that are not the sum of two squares and two fourth powers.

Original entry on oeis.org

23, 44, 71, 79, 184, 368, 519, 599, 704, 1136, 1264, 2944, 4024, 5888, 8304, 9584, 11264, 18176, 20224, 47104, 64384, 94208, 132864, 153344, 180224, 290816, 323584, 753664, 1030144, 1507328, 2125824, 2453504, 2883584, 4653056, 5177344, 12058624, 16482304
Offset: 1

Views

Author

Joerg Arndt, Jul 29 2012

Keywords

Comments

From XU Pingya, Feb 07 2018: (Start)
When n is a term, 16n is also. This can be proved as follows:
(1) If w is odd, then 16n - w^4 == 7 (mod 8), and it follows from Legendre's three-square theorem that the equation x^2 + y^2 + z^4 + w^4 = 16n has no solution (it is the same when x, y or z are odd numbers).
(2) If x, y, z and w are even numbers (x = 2a, y = 2b, z = 2c, w = 2d) such that x^2 + y^2 + z^4 + w^4 = 16n, then a^2 + b^2 = 4(n - c^4 - d^4). So there are integers u and v satisfying u^2 + v^2 = n - c^4 - d^4. i.e. u^2 + v^2 + c^4 + d^4 = n, which is a contradiction.
(End)
Conjecture: The set {a(n): n > 0} coincides with {16^k*m: k = 0, 1, 2, ... and m = 23, 44, 71, 79, 184, 519, 599, 4024}. - Zhi-Wei Sun, Jan 27 2022

Crossrefs

Programs

  • PARI
    N=10^6;  x='x+O('x^N);
    S(e)=sum(j=0, ceil(N^(1/e)), x^(j^e));
    v=Vec( S(4)^2 * S(2)^2 );
    for(n=1,#v,if(!v[n],print1(n-1,", ")));

Extensions

a(29)-a(37) from Donovan Johnson, Jul 29 2012

A111909 Numbers that cannot be represented as a^4 + b^2 with a, b > 0.

Original entry on oeis.org

1, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 18, 19, 21, 22, 23, 24, 27, 28, 29, 30, 31, 33, 34, 35, 36, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 83, 84, 86, 87, 88
Offset: 1

Views

Author

Stefan Steinerberger, Nov 25 2005

Keywords

Examples

			3 cannot be represented as a^4 + b^2 and thus is in this sequence while 10 = 1^4 + 3^2 is not.
		

Crossrefs

Cf. A111925 (complement), A055394, A022549. A022544 is a subsequence.

Programs

  • PARI
    list(lim)=lim\=1; my(v=List(),u=vectorsmall(lim),m2); for(m=1,sqrtint(lim-1), m2=m^2; for(n=1,sqrtnint(lim-m2,4), u[m2+n^4]=1)); for(i=1,#u, if(!u[i], listput(v,i))); Set(v) \\ Charles R Greathouse IV, Sep 01 2015

Formula

a(n) = n + O(n^(3/4)). - Charles R Greathouse IV, Sep 01 2015
Showing 1-10 of 16 results. Next