cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A022549 Sum of a square and a nonnegative cube.

Original entry on oeis.org

0, 1, 2, 4, 5, 8, 9, 10, 12, 16, 17, 24, 25, 26, 27, 28, 31, 33, 36, 37, 43, 44, 49, 50, 52, 57, 63, 64, 65, 68, 72, 73, 76, 80, 81, 82, 89, 91, 100, 101, 108, 113, 121, 122, 125, 126, 127, 128, 129, 134, 141, 144, 145
Offset: 1

Views

Author

Keywords

Comments

It appears that there are no modular constraints on this sequence; i.e., every residue class of every integer has representatives here. - Franklin T. Adams-Watters, Dec 03 2009
A045634(a(n)) > 0. - Reinhard Zumkeller, Jul 17 2010

Crossrefs

Complement of A022550; A002760 and A179509 are subsequences.

Programs

  • Mathematica
    q=30; imax=q^2; Select[Union[Flatten[Table[x^2+y^3, {y,0,q^(2/3)}, {x,0,q}]]], #<=imax&] (* Vladimir Joseph Stephan Orlovsky, Apr 20 2011 *)
  • PARI
    is(n)=for(k=0,sqrtnint(n,3), if(issquare(n-k^3), return(1))); 0 \\ Charles R Greathouse IV, Aug 24 2020
    
  • PARI
    list(lim)=my(v=List(),t); for(k=0,sqrtnint(lim\=1,3), t=k^3; for(n=0,sqrtint(lim-t), listput(v,t+n^2))); Set(v) \\ Charles R Greathouse IV, Aug 24 2020

A022550 Numbers that are not the sum of a square and a nonnegative cube.

Original entry on oeis.org

3, 6, 7, 11, 13, 14, 15, 18, 19, 20, 21, 22, 23, 29, 30, 32, 34, 35, 38, 39, 40, 41, 42, 45, 46, 47, 48, 51, 53, 54, 55, 56, 58, 59, 60, 61, 62, 66, 67, 69, 70, 71, 74, 75, 77, 78, 79
Offset: 1

Views

Author

Keywords

Comments

Complement of A022549; A045634(a(n))=0. - Reinhard Zumkeller, Jul 17 2010

A135911 Number of 4-tuples (x,y,z,t) of nonnegative integers such that x^2+y^3+z^4+t^5 = n.

Original entry on oeis.org

1, 4, 6, 4, 2, 3, 3, 1, 1, 4, 6, 4, 2, 2, 1, 0, 2, 7, 8, 3, 1, 2, 1, 0, 2, 6, 7, 5, 5, 4, 1, 1, 4, 8, 7, 2, 3, 7, 5, 1, 2, 5, 5, 4, 6, 5, 1, 1, 3, 7, 7, 3, 5, 6, 2, 0, 2, 5, 5, 4, 5, 2, 0, 2, 6, 11, 9, 3, 4, 6, 2, 0, 2, 5, 5, 3, 4, 3, 1, 2, 4, 10, 11, 7, 6, 4, 2, 1, 1, 6, 9, 7, 5, 3, 1, 1, 4, 8, 8, 3, 4
Offset: 0

Views

Author

N. J. A. Sloane, Mar 07 2008

Keywords

Crossrefs

Cf. A111151 (n such that a(n)=0).

A135910 Number of triples (x,y,z) of nonnegative integers such that x^2+y^3+z^4 = n.

Original entry on oeis.org

1, 3, 3, 1, 1, 2, 1, 0, 1, 3, 3, 1, 1, 1, 0, 0, 2, 5, 3, 0, 1, 1, 0, 0, 2, 4, 3, 2, 3, 1, 0, 1, 2, 3, 1, 0, 2, 3, 1, 0, 1, 1, 1, 2, 3, 1, 0, 1, 0, 2, 2, 1, 3, 2, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 3, 5, 3, 0, 2, 1, 0, 0, 1, 3, 1, 0, 1, 1, 0, 1, 3, 5, 4, 2, 1, 1, 1, 0, 1, 4, 4, 2, 2, 1, 0, 0, 1, 2, 3, 0, 2
Offset: 0

Views

Author

N. J. A. Sloane, Mar 07 2008

Keywords

Crossrefs

Programs

  • Maple
    M:=10; M2:=M^2; t0:=array(0..M2);
    for i from 0 to M2 do t0[i]:=0; od:
    for a from 0 to M do for b from 0 to M do for c from 0 to M do
    i:=a^2+b^3+c^4; if i <= M2 then t0[i]:=t0[i]+1; fi;
    od: od: od: [seq(t0[i],i=0..M2)];

A135912 Number of 5-tuples (x,y,z,t,u) of nonnegative integers such that x^2+y^3+z^4+t^5+u^6 = n.

Original entry on oeis.org

1, 5, 10, 10, 6, 5, 6, 4, 2, 5, 10, 10, 6, 4, 3, 1, 2, 9, 15, 11, 4, 3, 3, 1, 2, 8, 13, 12, 10, 9, 5, 2, 5, 12, 15, 9, 5, 10, 12, 6, 3, 7, 10, 9, 10, 11, 6, 2, 4, 10, 14, 10, 8, 11, 8, 2, 2, 7, 10, 9, 9, 7, 2, 2, 9, 21, 26, 16, 9, 13, 11, 3, 3, 11, 16, 12, 9, 9, 5, 3, 8, 21, 29, 21, 14, 12, 7, 3, 4
Offset: 0

Views

Author

N. J. A. Sloane, Mar 07 2008

Keywords

Comments

a(n) > 0 for n <= 10000. Is there any n for which a(n) = 0?
Note that there are many famous hard problems connected with sequences A045634, A135910, A135911 and the present entry (see the Ford reference).
The graph of this sequence suggests that a(n) is never zero. Checked to 10^5. - T. D. Noe, Mar 07 2008

Crossrefs

Programs

  • Maple
    M:=100; M2:=M^2; t0:=array(0..M2); for i from 0 to M2 do t0[i]:=0; od:
    for a from 0 to M do na:=a^2; for b from 0 to M do nb:=na+b^3;
    if nb <= M2 then for c from 0 to M do nc:=nb+c^4; if nc <= M2 then for d from 0 to M2 do nd:=nc+d^5; if nd <= M2 then for e from 0 to M2 do i:=nd+e^6; if i <= M2 then t0[i]:=t0[i]+1; fi; od: fi; od; fi; od: fi; od: od:
    [seq(t0[i],i=0..M2)];
    for i from 0 to M2 do if t0[i]=0 then lprint(i); fi; od:

A179509 Numbers that can be written uniquely as sum of a square and a nonnegative cube.

Original entry on oeis.org

0, 2, 4, 5, 8, 10, 12, 16, 24, 25, 26, 27, 28, 31, 33, 37, 43, 44, 49, 50, 52, 57, 63, 68, 72, 73, 76, 80, 81, 82, 91, 101, 113, 121, 122, 125, 126, 127, 128, 134, 141, 144, 148, 150, 152, 161, 164, 169, 170, 171, 174, 177, 185, 189, 197, 204, 206, 208, 216, 217, 220
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 17 2010

Keywords

Comments

A045634(a(n)) = 1;
subsequence of A022549.

A060861 Least number of the form x^2 + y^3 (x, y nonnegative) in exactly n ways.

Original entry on oeis.org

3, 0, 1, 225, 1025, 92025, 1334025, 5472225, 35964225, 930860225, 1000837225, 4979585600, 38515961025, 88154795025, 2046945411225, 88813460025, 5684061441600, 13052612865600, 64745012358225
Offset: 0

Views

Author

David W. Wilson, May 04 2001

Keywords

Comments

A045634(a(n)) = n and A045634(m) <> n for m < a(n). [Reinhard Zumkeller, Jul 17 2010]
a(n) > 2*10^14 for n >= 19. [Donovan Johnson, Dec 13 2008]
a(19) <= 4143680790926400 = 64*a(18). [Jon E. Schoenfield, Aug 11 2010]

Examples

			a(3)=225: A045634(225) = #{15^2+0^3, 10^2+5^3, 3^2+6^3} = 3;
a(4)=1025: A045634(1025) = #{32^2+1^3, 31^2+4^3, 30^2+5^3, 5^2+10^3} = 4;
a(5)=92025: A045634(92025) = #{303^2+6^3, 255^2+30^3, 213^2+36^3, 152^2+41^3, 30^2+45^3} = 5.
		

Extensions

a(14) and a(16)-a(18) from Donovan Johnson, Dec 13 2008
a(0) and examples from Reinhard Zumkeller, Jul 17 2010
Showing 1-7 of 7 results.