cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A348890 Number of ways to write n as 5*w^4 + x^4 + y^2 + z^2, where w,x,y,z are nonnegative integers with y <= z.

Original entry on oeis.org

1, 2, 2, 1, 1, 3, 3, 2, 2, 3, 4, 2, 0, 2, 3, 2, 3, 3, 4, 2, 2, 4, 3, 3, 2, 5, 6, 1, 0, 3, 4, 4, 3, 2, 4, 2, 2, 4, 3, 2, 2, 6, 4, 1, 0, 3, 5, 2, 1, 1, 6, 3, 2, 4, 2, 4, 3, 3, 4, 2, 0, 3, 2, 1, 2, 4, 6, 1, 2, 3, 4, 4, 1, 4, 5, 1, 0, 2, 2, 3, 4, 7, 6, 3, 2, 7, 9, 3, 4, 6, 9, 6, 0, 2, 5, 4, 5, 6, 7, 4, 4
Offset: 0

Views

Author

Zhi-Wei Sun, Jan 28 2022

Keywords

Comments

Conjecture: a(n) = 0 only for n == 12 (mod 16).
This has been verified for n up to 10^8.
Now we show that a(n) = 0 whenever n == 12 (mod 16). If 16*q + 12 = 5*w^4 + x^4 + y^2 + z^2 with q,w,x,y,z integers, then the equality modulo 8 yields that w,x,y,z are all even, hence 4*q + 3 == 20*(w/2)^4 + 4*(x/2)^4 + (y/2)^2 + (z/2)^2 and thus (y/2)^2 + (z/2)^2 == 3 (mod 4) which is impossible.
It seems that a(n) = 1 only for n = 0, 3, 4, 27, 43, 48, 49, 63, 67, 72, 75, 192, 215, 303, 1092.

Examples

			a(192) = 1 with 192 = 5*1^4 + 3^4 + 5^2 + 9^2.
a(215) = 1 with 215 = 5*1^4 + 2^4 + 5^2 + 13^2.
a(303) = 1 with 303 = 5*1^4 + 0^4 + 3^2 + 17^2.
a(1092) = 1 with 1092 = 5*0^4 + 2^4 + 20^2 + 26^2.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    tab={};Do[r=0;Do[If[SQ[n-5x^4-y^4-z^2],r=r+1],{x,0,(n/5)^(1/4)},{y,0,(n-5x^4)^(1/4)},
    {z,0,Sqrt[(n-5x^4-y^4)/2]}];tab=Append[tab,r],{n,0,100}];Print[tab]

A351206 Least positive integer m such that n = x^4 + (y^4 + z^4 + 7*w^2)/m^4 for some nonnegative integers x,y,z,w with y <= z.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 4, 3, 1, 1, 1, 6, 2, 2, 10, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 3, 4, 2, 4, 10, 1, 1, 2, 4, 2, 1, 1, 1, 3, 1, 3, 2, 2, 2, 2, 2, 1, 3, 4, 2, 2, 1, 1, 3, 1, 1, 1, 1, 2, 4, 2, 2, 3, 8, 10, 2, 2, 1, 10, 5, 1, 1, 1, 1, 1, 4, 2, 2, 8, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 4, 4
Offset: 0

Views

Author

Zhi-Wei Sun, Feb 04 2022

Keywords

Comments

Conjecture: a(n) exists for any nonnegative integer n.
This implies that each nonnegative rational number can be written as 7*w^2 + x^4 + y^4 + z^4 with w,x,y,z rational numbers.

Examples

			a(6) = 2 with 6 = 1^4 + (1^4 + 2^4 + 7*3^2)/2^4.
a(19) = 6 with 19 = 0^4 + (1^4 + 4^4 + 7*59^2)/6^4.
a(22) = 10 with 22 = 2^4 + (2^4 + 13^4 + 7*67^2)/10^4.
a(5797) = 20 with 5797 = 0^4 + (81^4 + 164^4 + 7*4797^2)/20^4.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    tab={};Do[m=1; Label[bb]; k=m^4; Do[If[SQ[(k*(n-x^4)-y^4-z^4)/7], tab=Append[tab,m]; Goto[aa]],  {x, 0, n^(1/4)}, {y, 0, (k*(n-x^4)/2)^(1/4)},{z,y,(k*(n-x^4)-y^4)^(1/4)}]; m=m+1; Goto[bb]; Label[aa], {n,0,100}];Print[tab]

A305553 Numbers that are not the sum of 2 squares and a 4th power.

Original entry on oeis.org

7, 12, 15, 22, 23, 28, 31, 39, 43, 44, 47, 55, 60, 63, 67, 70, 71, 76, 78, 79, 87, 92, 93, 95, 103, 108, 111, 112, 119, 124, 127, 135, 140, 143, 151, 156, 159, 167, 168, 172, 175, 177, 183, 184, 188, 191, 192, 199, 204, 207, 214, 215, 220, 223, 231, 236
Offset: 1

Views

Author

XU Pingya, Jun 20 2018

Keywords

Comments

Numbers of the form 4*A017101(k) are terms of this sequence.
m is a term iff 16m is also.

Crossrefs

Subsequence of A000037, A140823 and A022544.
A004215 and A214891 are subsequences.

Programs

  • Mathematica
    n=239;
    t=Union@Flatten@Table[x^2+y^2+z^4, {x,0,n^(1/2)}, {y,x,(n-x^2)^(1/2)}, {z,0,(n-x^2-y^2)^(1/4)}];
    Complement[Range[0,n], t]
Showing 1-3 of 3 results.