A348890 Number of ways to write n as 5*w^4 + x^4 + y^2 + z^2, where w,x,y,z are nonnegative integers with y <= z.
1, 2, 2, 1, 1, 3, 3, 2, 2, 3, 4, 2, 0, 2, 3, 2, 3, 3, 4, 2, 2, 4, 3, 3, 2, 5, 6, 1, 0, 3, 4, 4, 3, 2, 4, 2, 2, 4, 3, 2, 2, 6, 4, 1, 0, 3, 5, 2, 1, 1, 6, 3, 2, 4, 2, 4, 3, 3, 4, 2, 0, 3, 2, 1, 2, 4, 6, 1, 2, 3, 4, 4, 1, 4, 5, 1, 0, 2, 2, 3, 4, 7, 6, 3, 2, 7, 9, 3, 4, 6, 9, 6, 0, 2, 5, 4, 5, 6, 7, 4, 4
Offset: 0
Keywords
Examples
a(192) = 1 with 192 = 5*1^4 + 3^4 + 5^2 + 9^2. a(215) = 1 with 215 = 5*1^4 + 2^4 + 5^2 + 13^2. a(303) = 1 with 303 = 5*1^4 + 0^4 + 3^2 + 17^2. a(1092) = 1 with 1092 = 5*0^4 + 2^4 + 20^2 + 26^2.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 0..10000
- Zhi-Wei Sun, New conjectures on representations of integers (I), Nanjing Univ. J. Math. Biquarterly 34 (2017), no.2, 97-120.
- Zhi-Wei Sun, Sums of four rational squares with certain restrictions, arXiv:2010.05775 [math.NT], 2020-2022.
Programs
-
Mathematica
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]; tab={};Do[r=0;Do[If[SQ[n-5x^4-y^4-z^2],r=r+1],{x,0,(n/5)^(1/4)},{y,0,(n-5x^4)^(1/4)}, {z,0,Sqrt[(n-5x^4-y^4)/2]}];tab=Append[tab,r],{n,0,100}];Print[tab]
Comments