A346110 Numbers whose square can be represented in exactly four ways as the sum of a positive square and a positive fourth power.
469625, 1878500, 2224625, 4226625, 7514000, 8898500, 11740625, 15289625, 16906500, 20021625, 23011625, 25716665, 30056000, 35594000, 38039625, 46962500, 54316275, 55615625, 56824625, 61158500, 67626000, 79366625, 80086500, 92046500, 92481870
Offset: 1
Keywords
Examples
29679^2 = 29640^2 + 39^4, so 29679 is not a term (only one solution). 60^2 + 5^4 = 63^2 + 4^4 = 65^2, so 65 is not a term (only two solutions). 572^2 + 39^4 = 1500^2 + 25^4 = 1575^2 + 20^4 = 1625^2, so 1625 is not a term (only three solutions). 165308^2 + 663^4 = 349575^2 + 560^4 = 433500^2 + 425^4 = 455175^2 + 340^4 = 469625^2, so 469625 is a term (four solutions).
Links
- Jon E. Schoenfield, Table of n, a(n) for n = 1..10000 (first 97 terms from Karl-Heinz Hofmann)
- Karl-Heinz Hofmann, All valid {z,x1,y1,x2,y2,x3,y3,x4,y4} sets up to 10^9.
- Karl-Heinz Hofmann, A 3D Animation of the solutions up to 10^9.
- Karl-Heinz Hofmann, Python code (not only for 4 Solutions).
Crossrefs
Programs
-
Python
# See Hofmann link.
Comments