A345645 Numbers whose square can be represented in exactly one way as the sum of a square and a biquadrate (fourth power).
5, 15, 20, 34, 39, 41, 45, 60, 80, 85, 111, 125, 135, 136, 150, 156, 164, 175, 180, 194, 219, 240, 245, 255, 265, 306, 313, 320, 325, 340, 351, 353, 369, 371, 375, 405, 410, 444, 445, 455, 500, 505, 514, 540, 544, 600, 605, 609, 624, 629, 656, 671, 674, 689
Offset: 1
Keywords
Examples
3^2 + 2^4 = 9 + 16 = 25 = 5^2, so 5 is a term. 60^2 + 5^4 = 63^2 + 4^4 = 65^2, so 65 is not a term.
Links
- Karl-Heinz Hofmann, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
Select[Range@100,Length@Solve[x^2+y^4==#^2&&x>0&&y>0,{x,y},Integers]==1&] (* Giorgos Kalogeropoulos, Jun 25 2021 *)
-
PARI
inlist(list, v) = for (i=1, #list, if (list[i]==v, return(1))); isok(m) = {my(list = List()); for (k=1, sqrtnint(m^2, 4), if (issquare(j=m^2-k^4) && !inlist(vecsort([k^4,j^2])), listput(list, vecsort([k^4,j^2])));); #list == 1;} \\ Michel Marcus, Jun 26 2021
-
Python
terms = [] for i in range(1, 700): occur = 0 ii = i*i for j in range(1, i): k = int((ii - j*j) ** 0.25) if k*k*k*k + j*j == ii: occur += 1 if occur == 1: terms.append(i) print(terms)
Comments